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ABSTRACT

This report presents a technique to estimate driving force spectra of equipment packages
attached to cylindrical structures subjected to broadband random acoustic excitations.
This procedure is considered indicative of the present state-of-the-art and will provide
satisfactory predictions of the vibratory environment.

The force-spectrum equation was derived from a one-dimensional mechanical impedance
mode! and is expressed in terms of structural impedance, acoustic mobility and blocked
pressure spectra. A set of nomograms and computational charts was developed to compute
the force spectrum graphically with minimum amount of manual computation. Two example
problems with different structural configurations were used to demonstrate computation
procedures. Satisfactory agreements between analytical predictions and experimental
measurements were observed.
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1.0 INTRODUCTION

The prediction of localized vibratory criteria for space vehicle components due to acoustic
excitation has been accomplished based on the empirical techniques as described in References
1 and 2. These techniques provide standardized approaches to predict vibro-acoustic environ-
ments with sufficient conservatism to satisfy design and test requirements for unloaded primary
structures. The testing of components to such criteria is valid only when the impedance of a
primary structure is sufficiently higher than that of the attached component. Otherwise,

there is a strong possibility that the specimen would be overtested.

The objective of this program is to present a complementary technique by which the vibratory
criteria are to be specified in terms of actual forces acting on components. Test specifications
are given in terms of the power spectral density of a force environment and the approach is
designated as the "Force-Spectrum" method. The method utilizes one-dimensional mechanical
impedance models to describe dynamic characteristics of components and primary structures

in the direction normal to supporting surfaces. These impedances together with the acoustic
mobility and blocked pressure spectra form the basic elements to compute vibratory force
environments,

The development of the Force-Spectrum method was accomplished in three phases. In the first
phase, the one-dimensional Force-Spectrum equation was developed (Reference 3). An
experimental program was conducted to validate the prediction equation. A stiffened aluminum
cylinder with the dimensions of 3 ft (diameter) x 3 ft (height) x 0.02 in. (skin thickness) was
used in acquiring input impedances and acoustic mobilities. An 8 in. x 8 in. x 1/2 in.
aluminum plate was used as a simulated component. The plate was supported by four sets of
leaf springs, and o loadwasher was attached to the bottom of each spring for measuring loads.
The aluminum plate and the spring assemblies were used to measure the component package
impedance. The blocked sound pressure spectra were obtained from microphone measurements
on a rigid dummy concrete cylinder. Three equipment mounting positions and six acoustic
excitation levels were used in the tests. All test data were acquired on-line to analog/digital
data acquisition systems. Computer programs were written to reduce and analyze the acquired
data, and also to make predictions on interaction force spectra. Good agreements between
the predicted and measured force spectra were obtained.

The work performed in the second phase (Reference 4) consisted of evaluating the effectiveness
of different vibration specifications and control techniques to qualify flight components for
vibro-acoustic environments. The objectives of the evaluation are two-fold: the first is to
investigate the ability of analog control systems in simulating vibro-acoustic environments as
described above; and the second is to evaluate the severities of different component testing
methods under different vibration specifications. The scope of this programis limited to the study
of the one-dimensional simulation of vibro-acoustic environments by an electro=dynamic exciter
in the frequency range of 50 Hz to 2000 Hz. The control techniques considered in this study
included: the motion-control, the force-control and the current-control techniques. A total

of eighteen (18) vibration specifications were used to perform testing on two component specimens
excited by an electro-dynamic exciter. The test results suggest several possible solutions to
meet realistic component testing requirements,



The work performed in the third phase consisted of developing simplified computation techniques
to allow performing quick estimates on force spectra without involving computer runs, It is
recognized that several analytical methods, such as the direct integration method and other
numerical methods, can be used for the prediction of loads on finite cylindrical structures.
Nevertheless, the resulting equations are either too sophisticated or too general and are not
practical for performing quick estimates with adequate accuracies. Considering the fact that
an average engineer does not have ample time to thoroughly analyze each individual problem;
therefore, simplified methods are needed to solve complex problems with a minimum amount of
calculations and yet provide adequate accuracy. This is accomplished by the use of charts and
nomograms to reduce complex computations. The details of the simplified methods are
presented in this report.

The force-spectrum predicting equation was derived from a one-dimensional mechanical
impedance model. The equation contains four parameters defined at component mounting
locations; namely:

° Input impedance of primary structure

° Input impedance of component package
° Acoustic mobility of primary structure
° Blocked pressure spectrum

The derivation of the prediction equation ds given in Section 2.0.

Due to structural complexities of space vehicles, precise analytical approaches to obtain the
above indicated parameters are not practical. Therefore, approximate formulae were used to
compute these parameters. The design equations used in the computation are summarized in
Section 3.0. The design equations were further converted into nomographic and computation
charts so that lengthly computations can be avoided. The resulting charts and application
guidelines are presented in Section 4.0. In Section 5.0, two example problems used to
demonstrate the application design procedures are discussed. Finally, a summary of the research
program and the concluding remarks on the prediction procedures are described in Section 6.0.
The details of the development of these approximate equations are described in detail in
Appendices A, B and C. During the performance of this research program, several computer
programs were developed for dynamic analysis of cylindrical structures. The listing of these
computer programs and their usages are presented in Appendix D.



2.0 EQUATIONS FOR PREDICTING DRIVING FORCE SPECTRUM

The equation used in predicting driving force spectra of components is defined by Equation (2.1)
as follows:

_ ZL ZS ’ 5
¢L(w) 7172_5 a (w) . ¢P(w) (2.1)
where
¢L(w) = Predicted driving force spectrum
Zs(w) = Input impedance of primary structures
ZL(w) = Input impedance of component
ofw) = Acoustic mobility of the primary structure at component mounting points
¢P(u) = Blocked sound pressure spectrum

The derivation of Equation (2.1) is presented in Appendix A.

Input impedances of Equation (2.1) are specified in terms of the "force/velocity " format.
Therefore, the unit for input impedances is Ib-sec/in. Design charts used to estimate input
impedances are provided in Section 4.0.

The acoustic mobility term, a(w), is defined as the ratio of rms velocity response and the
driving acoustic pressure spectra at component mounting points. For a given cylindrical
structure, the acoustic mobility is dependent on the system damping factor, Q , the diameter
of the cylinder and the unit surface weight. By entering the design values for these quantities,
the a-term can be obtained by the method outlined in Section 3.3.

The blocked pressure spectrum, ¢P(u), is defined as the effective acoustic pressure acting on

a primary structure. The pressure is equivalent to that acting on a rigid cylinder which has the
identical geometrical dimensions as the primary structure.  The method used to compute the
blocked-pressure spectrum is presented in Section 3.4,

An alternate approach to compute the driving force spectrum could be achieved by replacing
the product of | a(w)| % + #,(w) by @

at the component mounting points of the unloaded primary structure. Thus, Equation (2.1) can
be written as follows:

(w), which is defined as the velocity response spectrum



Z Z 2
¢ (v = T 77 . ¢R(w) (2.2)

The computation of the driving force spectrum is illustrated by two examples as described in
Section 5.0. A flow chart indicating the computation sequence to determine the force
spectrum is shown in Figure 2.1,



3.0 ENGINEERING DESIGN EQUATIONS

3.1 Prediction of Structural Impedance

The cylindrical type support structures considered in this report consists of the following three
primary components:

° Stringers,
° Circulor ring frames, and
° Unstiffened cylindrical shells.

The derivation of the design equations is based on the following assumptions:
° Dimensions of cylindrical shells are assumed to be such that the
usual thin shell theories are valid, that is, the thickness-to-radius

ratio is small;

° Shells are stiffened by stringers in the axial direction, and
ring frames are attached inside the shell wall;

° The skin panel of shells is directly excited by impinging acous-
tic pressures; '

) The direction of vibratory response under consideration is
referred to that normal to the skin;

° The stiffeners are not directly excited by acoustic forces but
is driven by the motion of adjacent panels.

° The modulus of impedance is used in the design computation.

The evaluation of the driving-point impedances may be subdivided into three different frequency
ranges:

) Low frequency range or frequencies below the fundamental
frequency of the shell,

° Intermediate frequency range, and
° High frequency range or frequencies above the ring frequency
of the shell.

The equations for predicting the input impedance of structures are discussed in detail in Appendix
B. The resulting equations are presented in the subsequent sections and are summarized in

Table 3.1.



3.1.1 Beam (or Stringer) Impedances — The static stiffness of a beam defines the input
o impedance at frequencies below the fundamental resonance frequency of the beam. The static
1 stiffness at the mid-length point of a simply supported beam is given by

| K = 48 £ (3.1A)
13
where
, E = Young's modulus of elasticity

moment of inertio of stringer cross=section

et
|

effective length of stringer *

—
H

- Then the input impedance is obtained as:

N
]

K/iw (3.1B)

where

w circular frequency
o= V -1

The fundamental resonance frequency of the beam can be computed from the following equation:

_ ] 7\ (3.2)
fo= — (L
o () VB

where

p mass density

A cross-section area of stringer

At high frequencies or frequencies above the fundamental frequency, the overage input imped-
ance can be approximated as the characteristic impedance of an infinite beam and is given by
Cremer (Reference 5) as follows:

El Z
Z = 2(1+i)pA (EA) o (3.3)

* Note: If the distance, £ , between two adjacent supports is different from the entire length
of a stringer, the stiffness should be computed in according to the shortest support

distance. 6



The impedance curve defined by the above equation is represented by the line that passes
through the points of inflection of the impedance curve as shown in Figure 3.1. The peaks
and valleys are proportional to the damping coefficient, Q, and are located above or below
the average impedance line; their amplitudes, in respect to the average impedance line,
decrease with increasing frequency and the order of reduction in relative amplitudes is

proportional to 1/ \’ w . The equation used to compute the ratio of peak values is defined
as:
l ZF’ec'k _I = 4 ﬁ 1 (ﬂ)lﬂ Q (3.4)
|Zavg I £ o\pA Vi

3.1.2 Ring Impedances — The in-plane static stiffness of a simply supported ring is
given by (Reference 6):

El

K = — (3.5)
0.15R
where
I = 'moment of inertia of ring cross=section arec
R = median rodius of ring

However, the low frequency response of o free ring is associated with rigid-body motion which
is along the mass line in the impedance plot and is given by:

Z = ivM (3.6)

where M is the total mass of the ring and is expressed as:

M 2m pRA
A = cross-section area of ring

The lowest resonance frequency of the fundamental mode of rings is defined as follows:

- 1 El
fL = 0.427 " A (3.7)



at frequencies above the fundamental frequency, the impedance curve approaches the impedance
of an infinite beam whose value is given by:

/
z = i242 pA [%H BN (3.8)

Similarly, the peak responses at resonance frequencies are proportional to structurcl damping
and its peak /average ratio is obtained as:

Z ]/4
Zpeid JZ L [E_r} Q
Izqvg | 2 42 —— oA VU (3.9)

The impedance curve obtained from the approximate equations is illustrated in Figure 3.2
along with the analytic solution which is obtained from the general expression as discussed in
Appendix B.

3.1.3 Shell Impedances — The static input stiffness of o simply supported cylindrical
shell defines the input impedance at frequencies below the fundamental resonance frequency of
the shell. The static point input stiffness at the midlength of a cylindrical shell can be esti-
mated by the following approximate formula (Reference 7):

K = 2.50 Eh(;)‘/z (%—)% 3.10)
where
h = thickness of shells
R = radius of shell
I = effective length of shell
E = Young's modulus of elasticity

The fundamental frequency of a thin shell with simply supported ends is

C !
) L [ h\%
FL 0.375 -T <—R-) (3.11)



where

CL = speed of sound in shell wall
_ J_E_
p (1-v?)
and
p = mass density
v = Poisson's ratio

At high frequencies, the impedance becomes asymptotic to a constant value and is given by
the expression:

7 = -2 ow o (3.12)

P V3 L

which is identical to the impedance of a semi-infinite plate of width 7R . The frequency for
which the corresponding mode shape shows no dependence on the axial direction is defined as
the ring breathing frequency. The equation used to compute the ring frequency is given by:

C

_ i L
R T T (3.13)

Within the intermediate frequency range, which extends from the fundamental frequency to the
ring frequency, the impedance curve can be approximated by the straight line which joins two
points representing the input impedances at the fundomental frequency and the ring frequency,
respectively. The expression which describes this impedance curve was derivated and is

expressed below .

.
|z|=zp- <%ﬂ>2
(3.14)

An alternate theoretical method employing the concept of the modal density can also be used
for estimating the impedance at intermediate frequencies. The modal density of o structure is



-

San

T

defined as the average number of resonance frequencies that occur within a unit frequency band.
The inverse of the modal density is equal to the average separation between resonance frequencies.
Heck! (Reference 8) derived a closed form expression for the modal density of a uniform cylin-
drical shell using a simple approximation to the frequency equation; and these expressions are
used tc obtain the average separation between resonance frequencies (see also Reference 9) as
follows:

8B  h R o fer (3.15)

Af = -
R
W3 ! b

and the input impedance can be approximated by the following equation (Reference 10).

|Z|=2?-27rAf-M

m

(3.16)

8w 5,
h? Cz/\IR
) oN3 | L ©

in which’ Mrn represents the modal mass and is approximately equal to one=quarter of the total

mass of shell.

Comparison of Equations (3.14) and (3.16) shows that the theoretically derived expression in
Equation (3.14) is essentially the same result as the empirical equation obtained by fitting the
desired curve. A comparison of the resulting impedances obtained either from the approximate
and analytical equations is shown in Figure 3.3.

3.1.4 Stiffened Shell Impedances — The evaluotion of the stiffened shell impedances
may be made for three different frequency ranges classified as follows (Reference 11):

] Low frequency range or frequencies below the fundamental frequency
of the shell,

. Intermediate frequency ronge, and

e  High frequency range or frequencies above the ring frequency of the
shell.

10
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3.1.4.1 Low Frequency Impedances — The static stiffness is the predominant factor
which influences the input impedance. Due to the lack of theoretical expressions for
input impedances of stiffened cylindrical shells, it is assumed that at low frequencies
the input impedance at any location follows the stiffness line, this stiffness being equal
to the summation of the stiffness of the individual structural elements that are present
in that location. Two cases are considered in this frequency range, namely;

Case 1 — If the stiffness of the ring is small in comparison to the stiffness of the stringer
or the unstiffened shell, the overall stiffness can be computed by adding the stiffness
of the properly modeled structural elements that are present at the input location, as
follows:

K = K+ K, + TKg (3.17)
where
Ks = static stiffness of shells
KB = static stiffress of stringers or beams
KR = static stiffness of rings

Thus the input impedance of a stiffened cylindrical shell at low frequency follows
stiffness line whose value can be computed from the sum of stiffnesses of structural
elements at that point.

Case Il — For o stiffened cylindrical shell, if rings are sufficiently stiff in comparison
with the entire shell, these rings act like the boundary of structure panels. Then

the characteristic impedance of the shell can be determined from the length of

the spacing between two adjacent rings.

K = K + 2K (3.18)

The characteristic impedance represents the impedance of a structure of such o length
that reflections from the boundaries are negligible. In other words, the resonance
modes of a structure with any nondissipative boundary conditions are identical to the
resonance modes of o supported structure whose length is equal to the distance between
the node lines.

1
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3.1.4.2 Intermediate Frequency Impedances — Within the intermediate frequency
range, which extends from the fundamental frequency to the ring frequency, the input
impedances of the test specimens can be evaluated as the combination of the character-
istic impedances of the primary structural components. The equation is written as:

zZ = Z + 22y * 27, (3.19)
where
Zs = characteristic impedance of shells
ZB = characteristic impedance of stringers
ZR = characteristic impedance of rings

3.1.4.3 High Frequency Impedances — The input impedance of a stiffened shell at
high frequencies depends on the location of o measurement point and is evaluated by
the following rules:

° Unstiffened (skin) Point — The input impedance approaches that
of an infinite plate of the same thickness. :

Stiffened Point — The skin and the stiffener(s) decouple dynam-
ically at high frequencies, therefore, the input impedance
approaches that of the stiffener(s) .

'0

° Stiffened Intersection Point — The input impedance at the centers
of short stiffeners segments are generally higher than those of
longer stiffener segments; and the impedance at an intersection of
the stiffeners is approximately equal, to the sum of the individual
impedances of the two stiffeners - the ring impedance and stringer
impedance .

3.2 Impedance of Payload Structure

The Payload structure can be assumed as a lumped-mass system. The mathematical model is
shown in Figure 3.4 and the differential equations of motion can then be written as

MX + C{x -y) + Kix-y) =0

_ (3.20)
Ck-9) + Kix -y) = -Fe'"

12



in which M represents the total mass, K is the stiffness, and C denotes the damping of the
system. The frequency of the steady-state motion is the same as the force excitation frequency,
w , therefore, the mechanical impedance of the system is obtained as follows:

i Felﬁ.)f N 1

[
=
<
I

A Q <w°> '

W 2
A | (i)
Q \w -
W
where
W, = \IK/M = resonance frequency of undamped system
Q = \’KM/C = dynamic magnificant factor

For the region, w<«< W s Equation (3.21) can be approximated by
Z = oM (3.22)

Equation (3.22) shows that the impedance is a purely mass line. For the region, WS>, it

is possible to obtain an approximate formula for the impedance and this approximation yields
the following impedance formula:

K i W _ K
z = K [u@(w_)}_m-ﬁ (3.29



A typical example of the component impedance plot is shown in Figure 3.5 as a function of the
frequency of the driving force. The approximated curve is also shown in the same figure for
comparison. A computer program has been developed to compute the impedance and is shown
in Appendix D.

3.3 Prediction of Acoustic Mobility

Acoustic mobility, a(w), is defined as the ratio of the mean-square spectral density of the
velocity to the mean=square spectral density of the fluctuating pressure driving the structure .
This quantity is expressed by Equation (3.24) as follows:

S.(w)
alw) = ?EYGT (3.24)
p

where So(w) has units of (in./sec)z/Hz, and Sp(w) is the blocked pressure spectral density

having units of (psi)?/Hz. The blocked pressure includes the effects of reflection and thus
accounts for the pressure doubling effect when an object is immersed in a random pressure field.

Generally, the acoustic mobility for a given structure would be calculated based upon modal
analysis or statistical energy analysis as described in Appendix C. However, for the purposes
of presenting simplified design techniques, empirical curves may be used for defining acoustic
mobility. The development of these empirical curves from abroad range of available vibro-
acoustic data is described in detail in Appendix C. Only the main results will be presented

in this section. The basic design curves for acoustic mobility are shown in Figure 3.6 for three
values of domping; Q =20, Q=100 and Q = 200. The modified acoustic mobility, which was
derived from acceleration data from o wide range of vibro-acoustic measurements, is expressed
as:

2
o W = sU (ko) (3.25)
P D?

and has units of (in ./sec)z/ffz . The abscissa of Figure 3.6 is fD, i.e., Frequenc; times vehicle
diometer in units of Hz=ft. The surface weight term, (ug) , has units of (Ib/in.?), and the
vehicle diameter, D, is in feet.

In order fo use the empirical curves of Figure 3.6, an estimate of the structural domping, Q, must
first be obtained. Then by substituting for vehicle diometer, D, and surface weight, (pg), the

14



acoustic mobility SG (or &) may be determined as a function of frequency, f Hz. For struc-

S

tural Q values other than those shown in Figure 3.6, the acoustic mobility term may be
interpolated since an increase in Q by a factor of 10 results in an increase in the acoustic

mobility term of one decade.

3.4 Evaluation of Blocked Pressure

The blocked pressure, which is the effective acoustic pressure load acting on a flexible struc-
ture, can be determined from the far-field and the near-field pressure sources. The following
equations were derived for an infinite panel and do not account for diffraction effects of
structures with finite length. However, the error dut to diffraction effects is considered as
insignificant and will not influence the final results.

3.4.1 Far-Field Sound Pressure — The mean squared sound pressure on the surfoce of
a reflecting object such as cylindrical shells in a reverbrant sound field can be Jdetermined
from the far-field sound pressure measurement. The ratio of two RMS sound pressure levels can
also be defined as the normalized blocked pressure spectrum and is given by (Reference 12):

[Fioc] S | |
L blockl o 4(mkR)T Y e |He eR)| (3.26)
p2 =% m m
far
where
[Pf ]= measured sound pressure levels without
% the presence of flexible structures
k = wave number = 2mf/c
f = frequency, Hz
X ¢ = speed of sound in acoustic medium; for
air ¢ = 13,400 in./sec
R = radius of cylinder
ém = Neumann factor = 1 form =0, 2 for m>0
H;n (k R) = derivative of Hankel function of order, m

15
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The curve representing the expression of Equation (3.26) versus ka is shown in Figure 3.7 and
can be used to evaluate the blocked pressure spectra on the surface of cylinders in a reverberant
acoustic environment,

The same curve can also be used to convert measured far=field sound pressure levels into
blocked pressure levels. In the frequency range of interest, the RMS blocked sound pressure
is approximately 40 % higher than the measured sound pressure and such o conversion factor
generally leads to conservative estimates of the force spectra.

3.4.2 Near-Field Sound Pressure — The blocked sound pressure can also be deter-
mined from the pressure measured at the surface of the flexible structure. An approximate
formula for converting sound pressure levels measured on flexible structures into blocked sound

pressure levels is shown below (Reference 13).

L lock] i} !
flex 1+ BS e [ RS (3.27)
z pctz

[Pﬂ } = measured sound pressure levels at the surface
ex

of flexible structures .
p = density of acoustic medium
z = specific structural impedance of transmission

The sum (pc + 2z) is the total impedance and is equal to the inverse of the acoustic mobility,
o, of the cylindrical structures. Also, the acoustic impedance, pc, is usually much smaller
than the structural impedance and Equation (3.25) can, therefore, be written as

[P
block _ 1 (3.28)

Flex 1 + pca In (pcar)

16
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4.0 COMPUTATION CHARTS AND GUIDELINES

In order to minimize manual efforts in performing force-spectrum computations, it is necessary
to reduce the derived equations described in Section 3.0 into the forms of graphs or nomograms
so that lengthly computations can be avoided.

All equations listed in Table 3.1 contain a frequency dependent and a frequency independent
terms. Therefore, by evaluating the frequency independent terms, and later, combining with
the frequency dependent term, the impedance curve can be easily constructed. The approaches,
which are based on the separation of the frequency dependency to simplify the impedance
prediction, are presented below.

4.1 Nomographic Charts

A nomograph, in its simplest and most common form, is a chart on which one can draw a
straight line that will intersect three or more scales in values that satisfy an equation or a
given set of conditions. The equations summarized in Table 3.1 can be converted into
nomographic forms, and are shown in Figures 4.1 through 4.10. Figure 4.1 evaluates the
static stiffness of the ring frame based on the expression of Equation (3.5). By knowing the
values of radius, R, and the flexibility, EI, of the ring, and connecting these two values on
the R scale and the El scale with a straight line, the intersection point in the K scale
represents the computational result of the given equation.

Figures 4.2 and 4.3 perform similar computations for Equation (3.1A) and the frequency
independent part of Equations (3.3) and (3.8) which is defi ned as:

1

%4
_ El
2 = 27 pa [Fﬂ (4.1)

Figure 4.4 is o four-variable type nomogram for the expression of Equation (3.10). By using
one additional axis, T, which lies between the [ and R axes and need not be graduated,
Equation (3.10) was broken into two three-variable equations and are handled as the pro-
ceeding way, i.e., connecting the [ scale and the R scale with a straight line, then joining
the intersection point on the T axis and the h scales with another straight line, the intersection
point on the K scale is the resulting value.

Figure 4.5 is used to evaluate the frequency independent part of the shell impedance as defined
below:

4 <2
2 - R 2/\/—R_ (4.2)

Figure 4.6 is used to evaluate the infinite plate impedance, Z , according to the expression
of Equation (3.14). P
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Figures 4.7 through 4.10 are used to compute the lowest fundamental resonance and ring
frequencies of structural components. These fundamental frequencies are not required in the
prediction of impedances. Nevertheless, frequencies obtained from Figures 4.7 through 4.10
can be used to check the accuracy of the computation procedure.

The application of impedance data obtained from Figures 4.1 through 4.6 to compute vibro-
acoustic loadings by computation charts is described in the next section.

4.2 Computation Charts

4,2.1 Charts for Computing Structural Impedance — The impedance of an ideal
damping, spring and mass system may be represented by three straight lines as shown in
Figure 4,11, By using this approach, the driving=-point impedance for beams and rings based
on the equations of Table 3.1 can be represented by two sets of intersection lines varying
with the frequency as shown in Figure 4.12. In this figure, the line representing the proper
stiffness value is obtained either from the result of Figure 4.1 or 4.2 for rings and beams,
respectively, and the line defining the proper Zp value of the structure is determined from

Figure 4.3. The stiffness lines represent the impedance at low frequencies and the Zp lines

represent the impedance at high frequencies. The intersection.of these two lines determines
the fundamental resonant frequency of the structural system. In this figure and the following
figures, a scale factor is used to obtain correct scale values for the standard diograms,

The driving-point impedance for unstiffened cylindrical shells is shown in Figure 4.13, where
the Zp lines are replaced by the Zf lines. The lines represented the proper stiffness, Zf and

infinite-plate impedance are obtained from Figures 4.4, 4.5 and 4.6, respectively. At low
frequencies, the impedance of cylinders follows a stiffness line and at high frequencies the
impedance is equal to the impedance of an infinite plate which has a constant value. Within
the intermediate frequency range, the input impedance may be represented by the Zf line.

The fundamental frequency and the ring frequency of cylinders are determined by the inter-
section of these three characteristic lines.

Figure 4.14 represents the impedance lines for the component package which are defined by
the stiffness, mass and damping. The graph shown on the upper portion of these three charts
will be used to compute the logarithmic sums of two impedance curves. The application of

the logarithmic summation chart is explained in Section 5,0.

4,2.,2 Charts for Computing Blocked Pressure Spectrum — The conversion of a far-field
sound pressure spectrum into a corresponding blocked pressure spectrum is achieved by multiply-
ing the far-field spectrum by the correction coefficient 3 , as shown in Figure 3.7. To
facilitate graphical computation, Figure 3.7 is converted to Figure 4,15, in which the abscissas
scale is expressed in terms of fD; where f is the frequency in Hz and D is the cylinder diameter
in inches. To obtain the JB—- coefficient for a particular cylinder in the frequency scale,
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it is accomplished by shifting the fD scale in Figure 4.15 to the left for the amount correspon-
ding to the cylinder diameter, D. For example, if the diameter of a cylinder is 72 inches,
the \’ 3 - coefficient for that cylinder is obtained by shifting the fD scale by a factorof 72to the

left, as shown by the Q 3-curve in Figure 4.16. The blocked pressure spectrum of the far-field
pressure spectrum, shown in Figure 4.16, is obtained by adding the \} 3 values at each
frequency point to the far-field pressure spectrum. The resulting blocked pressure spectrum is

shown by the dashed line in Figure 4.16.

4,2.3 Charts for Computing Response Spectrum — The velocity response spectrum
is obtained by the product of the blocked pressure spectrum and the velocity acoustic mobility.
The normalized acoustic mobility curves for Q = 20 and 200 are shown in Figure 4.17. These
curves must be converted to I o | 2 versus frequency format for use in response computation.

The conversion can be accomplished graphically by shifting the abscissas scale to the left
corresponding to the diameter of a cylinder, D; and shifting the ordinate scale downward
corresponding to the quantity (m/D)*. For example, by applying the above procedures to an
aluminum cylinder with D =72 inches, Q= 20, and (m/D)? - 10-¢ Ib/m?, the velocity
mobility for the cylinder curve is obtained as shown in Figure 4.18. The velocity response
spectrum is obtained by summing up logarithmically the velocity acoustic mobility curve

and the blocked pressure spectrum curve. The response spectrum is indicated by the dashed-line
in Figure 4.18.

In practice, it is often necessary to convert the acceleration PSD into velocity PSD for computing
force responses. This can be achieved graphically by plotting the response curve on the con-
version chart as shown in Figure 4.19. The equivalent velocity response is read-off from the
vertical scale on the left-hand side.

4.2.4 Chart for Computing Force Spectrum — The response spectra and the structural
impedance obtained from Figure 4,14 are again plotted on Figure 4.20 for final computation.
The curve representing the sum of these two curves, as shown in Figure 4.20, is the resulting
force spectrum for the design structural system.

4,3 Summary of Computation Procedures
The computation procedures presented in this section provide simplified techniques to predict
vibratory environments for space vehicle components. A summary of the computation

procedures is presented below for quick references.

STEP 1: Determine and compute the geometrical and material properties
of cylinders and their components.
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STEP 2:

STEP 3:

STEP 4:

STEP 5:

Evaluate the parameters of structural impedances of primary
structural components, employing Figures 4.1 through 4.6.
Figures 4.7 through 4.10 may be used to compute resonant
frequencies. These impedances are summed in accordance with
the guidelines described in Section 3.1.4 by using Figures
4,12 and 4.13.

Estimate the impedance of the component package and construct
the component impedance curve by Figure 4,13,

Determine the blocked pressure spectrum by means of charts

as shown in Figures 4.15 and 4.16. The response spectrum is
computed by utilizing charts as shown in Figures 4,17 and 4.18,
or the response spectra may be obtained from the experimental
measured data plotted in Figure 4,19 directly.

Plot the response spectra and the structural impedance on

Figure 4.20. The force spectra for the design system is
obtained by summing these two individual curves.

20
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5.0 EXAMPLE PROBLEMS

To aid in understanding the computation procedure, two examples are illustrated in this section,
The first example is used to demonstrate the procedures used to predict structural impedances of
a stiffened cylinder. The predicted results were then compared with the measured data obtained
previously (Reference 11) to evaluate the accuracy of impedance prediction equations. The
second example is used to illustrate the procedures in computing a force spectrum based on the
structural configurations and the loading criteria used in Reference 3. The measured force response
data was used to evaluate the accuracy and conservatism of the predicted force spectrum.

5.1 Example of Prediction of Structural Impedance
The cylindrical structure consisted of a basic cylindrical shell, longitudinal stringers and ring

frames. The impedance data were measured under a total of seven different structural con-
figurations as described below:

° Bare shell

° Shell with one ring frame

° Shell with two ring frames

° Shell with two ring frames and one stringer

° Shell with two ring frames ond two stringers
° Shell with two ring frames and four stringers
¢ Shell with two ring frames and eight stringers

Figure 5.1 depicts the last structural configuration described above. All structural elements
were made of aluminum. The stringers and ring frames were fastened to the shell by means of
rivets. Details of structural configuration for each test set up and corresponding test results
can be found in Reference 11. Overall dimensions of the specimens are listed in Table 5.1.

The computations of static stiffness, Zp and Z, for the primary structure components have

f
been demonstrated previously as shown in Figures 4.1 through 4.6. The impedance computa-
tions for the configuration with two ring frames and four stringers are illustrated in Figures
5.2 and 5.3. In the computation, it was assumed that these two rings act like end bulkheads
with high structural rigidity so that the effective length of cylinder becomes the length of the
middle segment which is equal to 32 inches. In Figure 5.2, the impedance for one stringer
and four stringers are plotted based on the values obtained from Figures 4.2 and 4.3. Similarly,
the impedance curve representing the unstiffened cylindrical shell is plotted in Figure 5.3, in
which the impedance representing the sum of four stringers is also shown, except that at high
frequencies where the structural system decouples dynamically and the impedance approaches
that of one stiffener only. The impedance of the stiffened shell is equal to the linear summation
of these two component impedance curves and it is obtained in the following way:
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. At any frequency point, measure the difference of two impedance values
and use this length as the abscissas value in the logarithmic summation

chart (LSC).

° The ordinate corresponding to the abscissas in the LSC is the resulting
value for these two curves in logarithmic summation,

° Add the length of the ordinate to the upper impedance curve, the
resulting curve denotes the linear combination of these two impedances.

Based on the procedure as described in the above, the computed results are presented in
Figure 5.4. The experimental data obtained from Reference 11 are also shown in the same
figure for comparison. Generally speaking, the comparison is considered quite satisfactory
both in low frequency and high frequency ranges. Fair agreement is also observed for
frequencies just below the ring frequency. Some discrepancies are observed in the inter-
mediate frequency region. Such discrepancies are attributed to the errors incurred in summing
the impedances of the stringers. Further refinements in predicting techniques to achieve a
higher degree of accuracy in this frequency range are needed. The comparisons of the
remaining six configurations are illustrated in Figures 5.5 through 5.10. These results show
o satisfactory agreement between the predicted and measured data. Therefore, it may be
concluded that the equations and guidelines outlined in Section 3.0 are adequate for deter-
mining the structural impedances for design purposes.

5.2 Example for Prediction of Force Spectra

The structure used in the second example was a stiffened aluminum cylinder, as shown in Figure
5.11. The cylinder's dimensions were 36 in, (diameter) x 36 in, (length) x 0.02 in. (thick).
Its structural configuration is shown in Figure 5.12. The cylinder consisted of five aluminum
rings spaced at 6 inches in the longitudinal direction and 24 longitudinal stringers spaced at
4.7 inches in the circumferential direction. All stiffeners were mounted to the cylinder wall
by rivets. The dimensions of the curved panels formed by the stiffeners were 6 inches and

4,75 inches. Two steel rings of 1 in. x 1 in. x 1/8 in, angle section were rivetted at both
ends and two circular sandwich plates were bolted to the end rings by 1/4 in. diameter hex
bolts and nuts. Each sandwich plate consisted of two steel end plates of 1/8 in. thickness and
1/2 in, plywood as its center core. Overall dimensions of the cylindrical structure are listed

in Table 5.2.

The simulated component package consisted of a 1/2 in, aluminum plate with lateral dimensions
of 8 in. x 8 in. The plate was supported by four sets of leaf springs at its corners. The bottom
of each spring was fitted with o load washer assembly. Each assembly consisted of o Kistler

901 A load washer which was sandwiched between an anti-friction washer on the top and an
aluminum stud at the bottom. These elements were held together with the top clamping strips
by a center bolt. Each loadwasher was pre-compressed to approximately 1000 pounds level!,

so that the tensile and compressive forces induced during testing could be measured.
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The total weight of the component package was 3.81 pounds; the resonances of the package

were measured at 110 Hz and 1200 Hz, respectively. The latter frequency is the fundamental
resonance of the 1/2 in, plate. Detailed descriptions of the structural configurations can be

found in Reference 3.

The resultant impedances at the center of longitudinal stiffener segments were measured and
are shown in Figure 5.14, The analytic procedures used to predict the impedance are
essentially the same as that described in the proceeding section. Hence, no analytical
prediction on stiffness was made for this example. The impedance of the component package
is estimated and is shown in Figure 5.15. The fundamental resonant frequency of the component
package as seen from the shaker is located at 110 Hz. The measured impedance for the
stiffened cylinder is also presented in the same figure, which is approximated by two inclined
straight lines as shown. In Figure 5.15 the plotting scale is 100 times the correct value as
denoted by Factor =0.01, These two impedance curves are then combined according to the
procedure as described in Section 5.1 for the impedance of the stiffened shell except that the
resultant curve is obtained by subtracting the length of the ordinate coordinate from the lower
impedance curve, i.e., by summing the two individual mobility curves. The summed curve
given is the impedance term in the computation of the force-spectrum equation.

The blocked pressure and the acoustic mobility data for this example have been obtained
according to the procedure as described in Section 4.2.2, and are shown in Figures 5.16 and
5.17, respectively. The response spectra is then obtained by summing these two individual
curves and is shown in Figure 5.17.~

- Based on Figures 5.15 and 5.17, the force spectrum was computed and the resultant curve is

shown in Figure 5.18. The medsured force response data obtained from Reference 3 are also
presented in the same figure for comparison. Good agreements between the predicted and
measured force spectra were obtained. ‘

23



——

T

6.0 SUMMARY AND CONCLUSIONS
6.1 Summary

A method was developed to compute the interaction force between o component and its support
structure (space vehicle) which is subjected to broad band random acoustic excitations. The
method was derived from a one-dimensional impedance mode! and the force environment was
computed based on a total of four parameters as described below:

° Input impedance of component
° Input impadance of support structure
° Acoustic mobility at component mounting points

on the support structure

) Blocked acoustic pressure spectrum acting on the support structure

A set of nomograms was developed to compute impedances and computational charts were
prepared to obtain the force spectrum graphically with minimum amount of manual computation.
Two example problems were given to demonstrate computation procedures to obtain input
impedances of structural elements and the force spectrum. The computed results were verified
with experimental data. Good agreements between the two sets of data were observed.

6.2 Conclusions
The following conclusions may be drawn from the results of this program:

° The force-spectrum equation provides satisfactory results on the
predicted force environments of components mounted on space
vehicles. This equation is valid for the prediction of forces in
the radial direction of the support structure. However, the same
concept can be expanded to include the coupling effects induced
from the longitudinal and tangential directions so that the complete
description of forces in all three directions is feasible.

° The simplified computation method as presented in this report has been
shown to be accurate and conservative within current acceptable
tolerance limits. The computation process requires minimum manual
effort and no computer assistance is required.
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TABLE 5.1. SUMMARY OF DIMENSIONS, STIFFNESS AND MASS PROPERTIES
OF CYLINDER AND ITS COMPONENTS

Structural Items

Property Dimension Ring Stringer Shell
Mean Radius, R (in.) 23.0 -—- 24.0
Overall Length, £ (in.) 144 .5 96.0 96.0
Shell Skin Thickness, h (in.) -—- -—- 0.08
Cross-section Area, A (in2) 0.215 0.123 -
Moment of Inertia, 1 (ind) 0.135 0.012 ---
Weight per Unit Volume, p (Ib/in?) 0.1 0.1 0.1
Modulus of Elasticity, E (Ib/in2) 107 107 107
Weight per Stiffener * (Ib) 3.10 1.18 116.0

*  Two rings spaced at 32" in the longitudinal direction and eight longitudinal
stringers spaced at 18.8" in the circumferential direction.
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TABLE 5.2. SUMMARY OF DIMENSIONS, STIFFNESS AND MASS PROPERTIES

OF CYLINDRICAL STRUCTURES

Dimension

Structural ltems

Property Ring Stringer Shell
Mean Radius, R (in.) 16.0 -- 18.0
Overall Length, £ (in.) 100.5 48.0 48.0
Shell Skin Thickness, h (in.) - -- 0.02
Cross-section Area, A (in2) 0.942 0.049 --
Moment of Inertia, I (in®) 1.7715 0.0005! --
Elasticity Modulus, E (Ib/in2) 107 107 107
Weight Density, p (Ib/ind) 0.1 0.1 0.
Weight per Stiffener * (Ib) 9.467 0.235 10.857

*  The cylinder consisted of five rings spaced at 6" in the tongitudinal direction
and 24 stringers spaced at 4.75" in the circumferential direction.
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Figure 3.4. Mass-Spring — Dashpot Mode!|
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Figure 4.19. Velocity-Accelaration Response Conversion Chart
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Skin Thickness = 0.02"
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(Structural Details see
Figure 5.13(a)
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Figure 5.13. Structural Details of Ring Frames and Stringers
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APPENDIX A

DERIVATION OF FORCE-SPECTRUM EQUATION
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F ()

— 0
VL(U) = m (2)

But the blocked force F (w) is not a readily measurable quantity, therefore, it is necessary
0

to find an equivalent term which is suitable for measurement.

By definition, the constant source velocity, V (uw), is the velocity at the attachment terminal
0

with no loads attached. Thus, by setting ZL(u) in Equation (2) to zero, the source velocity
is determined by the following equation:

Fo (w)
V0 (w) = Zs(“’) (3)
or
Fw = V (v -« Z(w (4)
0 0 s _

Substituting Equation (4) into Equation (1), and rearranging terms, the driving force FL(U)
is obtained:

_ s
FL(U) = V0 (w) * S A (5)

Equation (5) shows that the interaction force spectrum is equal to the velocity spectrum of the
unloaded structure multiplied by the summation of the impedances of the support structure and
the component packages, connected in series. All of the above guantities can be obtained
through measurement techniques.

1.2 Structural Responses to Acoustic Excitations

Responses of structures to acoustic excitations, as shown in Figure A-4, can be expressed by
the following equations (Reference 2):

A-2



——

TS (7). A

¢, (T,u) = ZZ 7 (U 7 ¢p () J 7% W) (6)
m m 0
where
db)_((—r', w) = Velocity power spectral density at point r
(v = Power spectral density of reference sound pressure which is assumed
Po to be constant over the surface of component mounting locations

A = Surface area
Z (w) = Modal impedance

N IR R

W W ) Q ( w )
m m m
Zn(u) * = Complex conjugate of Zn(w)
ngn(w) = Joint acceptance function of the rrm'fh mode
6. (B e (T 0
= ff ds ds
A2 ¢ ()
s s Po
d-:, d ;‘ = Infinitesimal area vectors
¢p(?, ;", w) = Cross-power spectral density of the sound pressure field
d)m(?), ¢m(?) = Normal mode at t and —;, respectively
Krn = Generalized stiffness
w = mrh natura!l frequency = K /M
m m m

_ . - —t P — ®

Mm Generalized mass f p (s) ¢m (s) ds
s
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Generalized dynamic magnification factor

P = Surface mass density
By rearranging terms in Equation (6), the acoustic velocity mobility is obtained:

¢(r, (r)*A2

2 = ZZ 7o Yl 7)

—
a, (r, w)
X

In practice, velocity responses of a complex structure subjected to acoustic excitations may be
expressed as follows:

2 (8)

. (7, w)
X

¢ (1,0 = ¢p<?, w)

where ¢P(7, w) is the blocked sound pressure spectrum at Tt .

" To determine the acoustically induced driving force spectra @ (_r-', w) at attachment points,

it is necessary to transform a vibro-acoustic system to an equuvclenf one-dimensional impedance
mode!, so that Equation (5) can be applied directly to determine ¢ (t, w). Such a transfor-

mation is illustrated in Figure A-5 . The equivalent one- damensmnol model is represented by
a support structural impedance, Zs (r, w) , the component impedance, Z (f, w), and an

equivalent blocked force spectrum, ¢BF(?: w). Applying Equations (4), (5 ) and (8) to the

above system, the blocked force spectra equation is obtained:

Blocked Force Spectra: ¢BF( .

and the component-structure interaction force spectra is presented as follows:

a (T | - |t (10)
X

o (rw = @ (ro) -

A-4
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Figure A-1. One-Dimensional Impedance Model of a Structural System
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Figure A-2. Equivalent-Constant Force ‘Model|
VW)
3. L,
| 1 |
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Figure A-3. Equivalent-Constant Velocity Model
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Figure A-4. Structure Response Subject to Acoustic Excitation
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Figure A-5. One-Dimensional Model of o Structural System Subject to
Acoustic Excitations
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APPENDIX B

DERIVATION OF EQUATIONS RELATED TO
DYNAMIC CHARACTERISTICS OF STRUCTURES

1.0 INTRODUCTION

Brief derivations of equations on input impedances, resonant frequencies and modal densities,
as previously presented in Section 3.0, are given in this appendix. The structural elements
considered in the derivation consist of the following categories:

° Beam (or stringer)
° Ring frame

° Unstiffened shell
. Stiffened shell

Several computer programs have been written to evaluate input-impedance equations. A
complete description of these programs is presented in Appendix D. A listing of published
papers relevant to the formulation of impedance equations is presented in the Bibliography.

B-1



2.0 EQUATIONS FOR BEAM (OR STRINGER)
The response of a beam which is excited by a point oscillating force of frequency w acting

perpendicular to the beam at point [ can be calculoted by solving the classical beam
equation: 0

Bl d*w )

1
= - = — F§ - 1
Py o ww pAF (x lo) )
where:
w = Transverse displacements of the beam
) = Dirac delta function
E = Young's modulus

] = Sectional modulus
P = Mass density
A = Area

Equation (1) is valid provided that the bending wavelength, X , is mech greater than the
thickness of the beam, where X is defined as: ’ ’

_ 2r
A= 5 @

and
1
/4
R R g

Consider a finite beom of length [. The displacement response of the beam can then be
expressed in terms of the mode shapes, ¢m(x), and the corresponding resonant frequencies, w

as follows:

foe)
w =_‘_§: !
0 PA w2-u2 /) 2
m=0 m fd’m(X)dx



-

——

|

[}

r-«- \

-

-—
i

where:

The resonant frequencies of o simply supported beam can be shown as follows:

> _ El m* * = e MTTX 5
m oA X and ¢m(x) sin — (5)

Therefore, one obtains:

o 2

AT 2 i ‘ ®)
U

m:

(] -wz/wnﬁ)

The series in Equation (6) converges very rapidly and by setting the excitation frequency, w,
equal to zero in the above series, it is possible to obtain the static deflection at the location
? in the closed form as expressed by Equation (7) below:

0

K = F 435‘_ ‘ (7)
0

By including the contribution of the damping effect, the input impedance, which is defined
as the ratio of the excitating force to the response velocity at the location l , can then be

written as:
© e 1 - (_“’_) . (L)
Z Um Qm l')m
IU . 3 ’,
el —pAwm [1_(_‘-’_)} L (_w_)
Um Q Um

where Om is the dynamic magnification factor for the mfh mode .

In Reference 1, the mechanical power transmitted into the beam was investigated. The con-
clusion shows that the average power is independent of the length of the beam and the end
conditions, and can easily be computed if the impedance of the corresponding infinite system

is known. The impedonce equation of an infinite beam has been obtained by Cremer (Reference
2) as follows:

B-3
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3.0 EQUATIONS FOR RING FRAME

The governed equation of the radial displacement, w, of o ring with radius, R, cross-section
area, A, mass density, p, and flexural rigidity, El, is given by (Reference 3):

-~

4 2 2 2
l<4(aéw L g Bw +8w)_w2(8w_w>=_%_38(9) 10)
568 364 962 962 PR 382

where
‘/
o El 4
k=T [‘57:] an

In this equation, the ring is excited by a point driving force of frequency w in the radial
direction, and 6 is the angle around the ring. Equation (10) is valid only when the
thickness of the ring is much smaller than the radius a, and when w < C /R where CL is
the longitudinal velocity in the ring material.

A rather straightforward method of solving Equation (10) under given sinusoidal input
conditions is to expand the displacement in terms of the eigenfunctions, cos nB . By applying
this technique, the input impedance of the ring may be obtained:

7rR z " (12)

N|—
é
MB

n'_'

and the so-called "modal impedance" may be written as follows:

2 w
z =iupA(]+n )(1- n ) (13)
n n2 w2
where
2 2 2
L2 = Kkt A (nf-1) , N>
n n? +1

angular resonant frequency of the n mode of ring

The above expression for the input impedance can be summarized analytically as follows:

B-5
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y AL _z-l_pgA—ﬁ- [1+cof (71’01)] (14)

where:

a=W/k

Figure B-1 shows the modulus and phase angular of the input impedance obtained from the
analytical prediction based on the above equation. Figure B-2 shows the measured impedance
from the experimental testing results. Satisfactory agreement between these two plots can

be observed.



4.0 EQUATIONS FOR UNSTIFFENED CYLINDRICAL SHELL

The partial differential equations governing the motion of a thin cylindrical shell of radius, R,
and thickness, h, in the axial, circumferential and radial directions are given by:

_ R?
Ll (u, v, w) = ph ) (UTT F’1 )
h & p (15)
L2(u,v,w) = b T (VTT‘ 2\)
h R
L3 (b, v, w) = p o (w_r7_+ P3 )

where the L‘ , L oand L are the space differential operators as derived in Reference 4.
J

2
Subscript T denotes differentiation with respect to dimensionless time parameter T defended

by:
T = ot . (16)

where w is the circular frequency of the steady forcing function. The quantity p is the
mass density of shell material and:

D = ER¥/12(1-v?) (17)

is the flexural rigidity in which E and v are the Young's modulus and Poisson's ratio of shell,
respectively. Axial, circumferential and radial displacements are designated by u, v and w,
respectively, and are expanded in Fourier series as:

o @
u = ;%);o Umn cos 7 cos nB
eSigee mor
v = nzz:];:] an sin ﬁx sin nB (18)
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n=0m=1

Substituting the above expression into these equations of motion, after some manipulation, and
utilizing the orthogonality relations of the sine and cosine function, a set of simultaneous
equation for the Fourier moda! amplitude factors Umn’ an and Wmn can be reduced. The

eigenvalues of these homogeneous matrix equations, which satisfy the boundary conditions of
a simply supported, circular cylindrical shell, are the angular frequency parameters which
correspond to the (m,n) mode of the shell. The resonance frequencies of a simply supported
finite cylinder of length are found to be as follows (Reference 5):

Q2 = -\)2)|<4/(l<2+n2)2 +.32 | (k2+n2)2-]— [n2(4—v) -2—v]/(1 -v) ' (19
mn | 2 |
where:
“mn
an - C (20)
L
and CL = E -
p(1-v7)
= longitudinal speed of sound in shell material
w o= angular resonant frequency of the (m,n) mode
k = mnR//4

Co
1"
o
N
N
s
=

In the above expressions the end conditions were derived from simply supported cylinders.
However, the equations can be applied to cylinders with other boundary conditions. This is so
because the resonance frequencies of a cylinder with any nondissipative boundary conditions
are identical to the resonant frequencies of o supported cylinder whose length is equal to the
distance between the modal lines that are closest to the ends.
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Consider now that a radial point force, which is harmonic at frequency w with an amplitude
F act on the shell at point (x0 , 0). This exciting force can be expanded as:

o o)
7r2:l E E an sin 7 & in m;rx cos nB (21)

FS(x-xo)S(e -0) =
n=0 1

(e 2) mirrx
m:

By utilizing the nonhomogeneous matrix equations, the amplitude of radial displacement of the
shell at location of point force can be represented by the summation of the following classical
modal expansion:

© o F
wos E Z ¢mn(xo) Kmn Ymn (w) (22)
n:o m:] mn

where:
m7'r><O
¢mn(x0 ) =  sin 7
=  rodial mode shape of shell at location of point force
F = F@ (x)
mn mn g
= generalized force for the (m,n) mode
T oK = M w?
mn mn mn
= generalized stiffness of the (m,n) mode
M = § M
mn mn 9
= generalized mass of the (m,n) mode
M = 27aRlhp

=  tota! mass of shel!



mn
=o.25(1+l2) for n 21 (23)
n
_ian (w)
Ymn (w) = Hmn (w) * e
= dynamic magnification factor for the (24)

(m,n) mode vibrating at frequency w

2 V.
and Hmn(w) = g[]-(ww )2} + Q12 (an)2€ 2 (25)

9]
T

dynamic magnification factor for the (m,n) mode

By setting the excitation frequency, w, equal to zero in the above series, it is possible to
determine the static deflection of the shell to the statically applied point force as follows:

o 0] @ m
wi0) = 30 3 ——— (27)
W

It appears that we have here a fairly general solution for the problem of thin shell vibrations,
at least for a certain useful set of boundary conditions. From a mathematical point of view,

this is certainly true, but for practical applications it is not sufficient that a series like that

will converge eventually. It is required that the series must converge so well that it may be
obtained within a certain accuracy from a rather limited number of terms.

B-10



The above series may be slowly convergent for the following two cases: 1) resonant frequencies,
w increase slowly with the increase of m and n; and 2) spatial distributions of loading

mn’

for which | @2 (x ) /'8
mn g mn

and point-type forces. Slow convergence in the above series for w(0), leads, of course, to
slow convergence in the series for w as given in Equation (22). For such cases, a more
rapidly converging modal series is needed to represent the solution and has been considered by
several investigators. One method which could be applied in the present problem is the
so-called modified (or Willian's) modal representation (Reference 6). In this method, the
elastic response of shells is decomposed into two parts: an instantaneous static response under
the applied force, ond a dynamic portion consisting of o modal expansion which converges
faster than would a purely modal representative of the response.

does not exhibit a rapid decrease with n — e.g., localized

An application of this to the case of input impedance is as follows:

e [y @ w(o>}

i F F
Lo [ © o d’ni (xo) M
= 2 —_— - -0
TS e (Ve R . @
0 | n=0 m=] mn “mn
where : K = F/w(0) is the static input stiffness of a cylindrical shell.

In the cbove expression, the term inside the bracket is:




.
PR

o———

For w >w, | (wW—0, while Y__(w)— 1. Thus the modified modal series, given in
mn mn mn

Equation (28), exhibits much faster convergence than the classic modal series.

For the cases of interest, the modal series representation for w(0), given in Equation (27),

is slowly convergent but it only requires one computation, which is independent of w . Also,
one can derive an alternate expression in a closed form by a process of direct integration for
the static response stiffness for many structures which require considerably less computation.

A comparison of the above two methods for evaluating the driving point impedance of thin
cylindrical shells was made and the results are summarized in Table B-1. Calculations were
performed based on a thin aluminum cylinder with the following materials constants and
thickness parameter.

h = 0.08in.

R = 24in,

£ = 9in.

E = 1x107 Ib/in?2 .
p = 0.11b/in?

v = 0.36°

The results clearly demonstrate much faster convergence of the modified modal method.

Equation (28) was numerically evaluated for x = £/2 ond an = 15 for the same
0

cylinder. The frequency range considered in this computation was between 1.0 Hz and
10,000 Hz. The computation was made for 25 frequency points for each frequency decade.
The analytical prediction of the shell impedance, including emplitude and phase, -is shown
in Figure B-3. Also, the comparison is made on the amplitudes between the measured data
(Figure B-3) and the analytical (Figure B~4) for a thin cylindrical shell with the same
dimensions. These two plots show an excellent agreement between the average of the
experimental data and the analyticol predictions.
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5.0 EQUATIONS FOR STIFFENED CYLINDRICAL SHELL
Consider a uniform, thin, cylindrical shell which has a single ring frame around the circum-
ference. The purpose of this analysis is to derive an expression for the radial input impedance
at the ring frame. The following assumptions are used in the formulation:
° The shell and ring frame have no material damping

° The neutral axes of the shell and ring frame are coincident

As derived in Section 3.0 of this appendix, the input impedance of rings can be written as:

in which the modal impedance is:

2 [A]
z = ;wanA<“” )(1- A ) (32)
rn n2 02

“Similarly, the input impedance of unstiffened shells is:

| -1
—Z—— - E ( an) (33)

s n=0

i Y mn

yA = 2mRphl/iw S UE—

SN m=1 § 2

mn mn
h

The nth mode of the shell is dynamically coupled with the nf" mode of the ring frame since the
shell and ring frame have the same mode shape, ¢n(9) = cos nB . Because of the orthogonality

h

of the set of mode shapes, ¢n(9), the n'" mode of the system is dynamically uncoupled from

all other circumferential modes. Thus, to determine the dynamic response of the system to any
external loading, it is sufficient to determine the response of any nth mode of the system, and
then sum these modal response overall of the nth modes. These harmonic responses of the
structure can be readily obtained by expanding in the following series:



oo
wie) = ) W o0 (34)
=0

where W = maximum amplitude of the nth mode. The input-point impedance, Z, of the
n .
structural system is:

=1

_ F _ F _ F vl
2= 30 T Tow® " o |2 Y (@)
n=0
The modal driving point impedance is defined as:
F F
2, = —— = —— L )
iwW iwW fwW
n n n

where:

F

r

F

S

force component applied to the ring frame

1

force component on the shell

Since the displacement, Wn’ is the same for both the shell and ring frames, it follows that:

Z = T+ 5 = Z +2 (37)

=1
z =% [Zm“zsn] (38)

Similar derivation can be applied to the case of auniform cylindrical shell which is stiffened
by a stringer along the longitudinal direction. The result is given by:
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z = Z [zBm * Zsmjl (39)
m=1

In this equation, the modal impedances have been obtained in Sections 2.0 and 4.0 of this
appendix, and are written as follows:

= 1 L 2 N (40)
ZBm w2 pAwm (1 w2 )
m
@ Y
Z = 27mRph! iwz — (41)
sm o 2
n=0 mn mn
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TABLE B-1. COMPARISON OF CLASSICAL AND MODIFIED MODAL METHODS

FOR MECHANICAL IMPEDANCE EVALUATION -7

Classical Modal Method

Modified (William's) Modal Method

Frequency (Terms) (Terms)
(Hz) M N M N
1 151 51 77 24
10 151 51 77 20
100 139 45 73 16
1000 213 84 71 35
10000 339 168 119 56

Tota!l Computer
Time for 5 Fre-
quency Points

(XDS Sigma 5)

1.080 Minutes

0.167 Minutes

NOTE: M and N are the maximum values of m and n required to have the sum

of all

m=1,2, ..., M

andall n=1, 2, ..., N terms be greater

than 1000 times the next term in the series.
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Figure B-2. Measured Input Impedance of a Circular Ring
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Figure B-4, Measured Input Impedance at Mid-length of an Unstiffened Cylindrical Shell
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APPENDIX C

THEORETICAL AND EMPIRICAL METHODS FOR
PREDICTING STRUCTURAL RESPONSE

1.0 INTRODUCTION

Prediction of the vibration response of plate and shell structures exposed to random pressure
fields is generally achieved by using one of the following three approaches:

1) Classical Modal Analysis
2) Statistical Energy Analysis

3) Empirical Analysis and/or Extrapolation

The development of modal analysis and statistical energy analysis is well documented in the
literature (References 1-3 and 4-6, respectively). In general, modal analysis is most useful

at low frequencies where the modal density of the structure is low, whereas the statistical
energy analysis is most useful at frequencies where the modal density is high. For a cylinder,

a sufficiently high modal density would be reached approximately two octaves below the ring
frequency. Recent studies (Reference 7) hove been conducted to evaluate the accuracy of these
two analytical methods in conjunction with carefully controlled vibro-acoustic experiments.
These studies have shown that both methods result in satisfactory accuracy provided that realistic
volues of domping are assumed for the computations.

The most significant disadvantage of these analytical approaches is the complexity of the
calculations, since they require a digital computer in order to achieve response results over

a broad enough freguency range. Another significant disadvantage is the fact that it is
necessary to specify accurate values of damping for the structure. In the case of modal analysis
the damping must be specified for each mode , whereas in the case of statistical energy analysis,
the damping must be specified for each octave band or third octave band. The values of damp-
ing assumed for a given structure have o marked effect upon the final response spectrum,

Because of the complexities inherent in these analytical methods, considerable efforts have
been made to develop empirical techniques for the prediction of vibration response (References
8-11). Initial developments concentrated upon the normalized response of Titan and Jupiter
space vehicles (Reference 8) as shown in Figure C-1, Subsequent developments (References 10
and 11) have been limited to Saturn V type structure, and response information has been
summarized in the form of data banks. The most significant disadvantage of these empirical
approaches is the fact that response data are presented for very few types of structures and no
attempt has been made to review all of the vibration data with a view to deriving a generalized
response prediction curve,

Therefore, the objective of the present study was to examine vibration response data from a wide
range of sources in an attempt to derive a single empirical response curve for cylindrical type
structures. In Sections 2.0 and 3.0, the essential elements of modal analysis and statistical

energy analysis are presented. This is followed in Section 4.0 by a description of empirical
techniques for predicting vibration response, and relevant conc lusions are presented in Section 5.0.
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2.0 MODAL ANALYSIS
2.1 General Theory

In predicting vibration response by superposition of the response of the normal modes, it is
implicitly assumed that the mean-square response amplitude of each mode can be obtained
independently, and that the summation of these mean-square responses is insensitive to
coupling between modes. In fact, the total mean-square response of a structure at any point
depends upon the summation of the mean square modal responses and upon the summation of
the cross-correlations between pairs of modes. The latter cross terms are in some cases
significant; however, each term in this summation becomes equal to zero if the space
averoge of the mean square response is obtained., The cancellation of modal cross-correlations
for space average response is due to orthogonality between the modes. The analysis of
structural response to random pressure fields by modal superposition was initially formulated by
Powell (References 1, 2 and 3); detailed results were derived for the response of structures to
plane acoustic waves and to a two-dimensional reverberant acoustic field. The theory was
extended to predict the response of panels to turbulent boundary layer pressure fluctuations

by Wilby (Reference 12), and to a three-dimensional reverberant acoustic field by Crocker
and White (Reference 13). More recently, this work has been extended by Bozich and White
(Reference 14) to predict the responses of cylindrical shells to attached boundary layers, and
by Cockburn (Reference 15) to predict responses to simultaneously applied fluctuating pressure
fields such as separated flows and oscillating shocks.

It can be shown that Powell's final result for the space-averaged radial acceleration of a
cylindrical shell is given by:

where S.(w) is the acceleration mean-square (power) spectral density in g2/Hz, Sp(u) is the
u

pressure mean-square (power) spectral density in (psi)?/Hz, p is the mass per unit area of the
shell surface in Ib sec?/ind | jm:)n is the joint acceptance of the (mn) shroud mode, and g is

gravitational acceleration in in./s*. The remaining dimensionless terms, 3mn (introduced by
the spoce averaging), and H (umn/u) (the magnification factor of the (mn) mode at

frequency w ) are defined as follows:
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where an is the magnification factor at resonance, wo of the (mn) shell mode, and

the subscripts m and n refer to the number of axial half waves and the number of full
circumferential waves, respectively. The joint acceptance term, jm2n (w) , bhas @ maximum

value of unity, and refers to the direct joint acceptance of the (mn) mode of the shell.
Physically, it is a measure of the coupling between the fluctuating pressure environment and
the structure, and is generally assumed to be separable inte m(axial) and n(circumferential)

components, such that j 2 (W)= j2(w) + j2(w), as follows:
mn Jm Jn
L L ,
1 X . X ) .
jQ(w) = — / / C(8,uw) - @ (x) + @ (x') dxdx' (2)
m L2 m m
x  x=0 x'=0
L L
. 2 ] 4 4 1 1
N s I IR XURE XA (3)
Y y=0 y'=0 ‘

In the above relations, ¢m(x) and ¢m(x') represent the axial components of the mode shapes
at points x and x' on the shroud, while ¢n(y) and ¢n(y') represent the circumferential
components at points y and y' on the shroud. The quantities Lx and Ly denote the axial

and circumferential lengths of the shell, respectively, and the terms C(%, w) and C(n, w
represent the axial and circumferential narrow band space-correlation coefficients of the
particular fluctuating pressure environment. Axial separation distances (x - x') are denoted
by €, and circumferential separation distances (y - y') by n.

C-3



Since the acceleration power spectral density, defined by Equation (1), has been normalized
by the pressure power spectral density, the problem of predicting the vibration response
essentially reduces to the determination of the joint acceptances, Jm2n (w), for each fluctuating

pressure environment, Computation of the response on this basis therefore provides o convenient
means of comparing the effects of different pressure correlation characteristics upon vibration
response. For conversion to absolute vibration response levels, the normalized response given
by Equation (1) is simply multiplied by the power spectral density of the fluctuating pressure
field. For o particular structure and fluctuating pressure field, the joint acceptances are
evaluated by substituting the axial and circumferential mode shapes and narrow band correlation
coefficients into Equations (2) and (3). Closed-form expressions for the joint acceptances of
cylindrical structures to o number of random pressure fields have been published by several
investigators (References 14, 15 and 16). For cylindrical structures subjected to localized
random pressure fields, Bozich and White (Reference 14) derived joint-acceptances for attached
turbulent boundary layers, a reverberant acoustic field and a progressive wave acoustic field.
Joint acceptances for rocket noise at lift-off, separated flow and shock wave oscillation have
been derived by Cockburn (Reference 15). T

It can be seen from Equations (2) and (3) that for a given structure the joint acceptances are
determined by the functional form of the narrow band space correlation coefficients.

2.2 Joint Acceptances

The complete closed-form expressions for the joint acceptances are not presented here, since
they are quite lengthy and may be found in References 7 and 12-16. Hdwever, for the
purposes of hand-computing the responses of individual modes, approximate joint acceptances
are presented in this section. These approximations were presented in Reference 7 for hand-
computation of structural response to reverberant acoustic fields, grazing incidence and normal
incidence acoustic waves, rocket noise and attached turbulent boundary layers. These
expressions were derived by dividing the frequency range of the excitation into three distinct
regions, as follows: frequencies well below coincidence, frequencies well above coincidence,
and frequencies which are coincident. The condition of coincidence is defined by wavelength
matching of the elastic wave in the structure and the pressure wave which is forcing the
structure, i.e., )\e = A\ at coincidence. From this definition, 2Lx/m =X, and thus:

= m at coincidence

In the circumferential direction, )\e =L /n and hence:
Y

L
_>\X = n at coincidence,

C-4



——

Now, at coincidence the structural response becomes a maximum, with axial and circumferential
joint acceptances disploying peak values at 2Lx/>\ = m and Ly/)\ = n, respectively.

For a reverberant acoustic field, it may be shown that the joint acceptances are as follows:

| 2L 2 \
j2 (w) T m))\( for m = even

m

i

=~ 4 for m = odd >f<<f .. (4)
(m )2 coincidence
ALV
2 ~ — | 2L -
In () = 3 ( nA ) )
]
2 -
Jm (w) = 4m
f = fcoincidem:e )
.2 o
o @ = 2
A
.2 —
Jm (w) = 41
X
X e Fcoincidence (©)
12 (0) x ———
I 2L
Y

For excitation by turbulent boundary layer pressure fluctuations, it may be shown that the
joint acceptances are as follows:

)
jnﬁ W = ( 2 )2 % * _____{":_ P F fco'nc'denc 7)
mﬂ 2 A 1 | e
() & = f=
I Y 26x ' coincidence
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X
26
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5 2 2
A = 1+ ( = )
mi7T
Lxu L)<
5x = 0.10 U + 0.27 i
c b
Y Y
& = 0.72 + 1.95
4 Uc 8b
Lxu
Yx - L
c
Uc = Convection velocity
8b = Boundary layer thickness

(10)
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3.0 STATISTICAL ENERGY ANALYSIS

3.1 General Theory

Statistical energy analysis has been used extensively to predict the response and noise reduction
of complex structures excited by random pressure fields (References 4, 5, 6 and 7). This
method of analysis is based upon the basic principle that the time average power flow between
two simple oscillators, linearly coupled and excited by a wide-band excitation, is proportional
to the difference in their time-average total energy, the power flow being always from the
oscillator of higher energy to that of lower energy.

When o multi-modal system is excited in a band of frequencies, its modes can be divided into
resonant and non-resonant modes within the band. The energy transmission between non-resonant
modes and between resonant and non-resonant modes cannot be predicted by the statistical
energy analysis and, usually, it is calculated by using classical vibrational analysis. However,
for energy transmission between resonant modes, the following power balance equation is

valid (Reference 7):

P = wn,.n ié. - iB_ (12)
AB AB A Ny ng
where
w = center frequency of the excitation band
= ¢ = H
ag = %ap NB/u coupling loss factor
n, = average modal density of system A over a band of frequency 4;
it is defined as:
| - -
) ] I\A(f+A/2) NA(f A/2)
A A

NA(\‘) = average number of modes with resonance frequencies below f
Ny = average modal density of system B.

Formulas for modal densities of some of the most commonly used structural elements are as follows:
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where

where

where

nr(w)

Simply Supported Beam

n (W) = £ (13)

= modal density, number of resonance frequencies per radian per second

= frequency in rad/ sec
= length of beom
= radius of gyration

= longitudinal wavespeed in beam material

Simply Supported Rectangular Plate

n (U) = ll 12 F ) . ' (]4)

2 hC
. P d i

i

modal density of plate

dimensions of plate

thickness of plate

Free Ring

Vi
nr(u) - R {E_“] (15)

= modal density of ring



R = radius of ring

v = mass per unit length
E = Young's modulus
J = moment of inertio of cross-section area
° Clamped Circular Plate
R? " 12
n_ (W) = (16)
P m2hC
L
where
ncp(u) = modal density of circular plate
R = radius of plate
h = thickness of plate
Cl = longitudinal wavespeed of material
° Simply Supported Cylindrical Shell (Reference 17)
)
lv 3 0
n~ (w) = —4/—— a6 (17)
Cyl mh ]
0 J] - — Sif'\4 e
v
where

‘ sin”! V v for vl

0 ( m/2 for  v2]
ncyl(u) = modal density of cylinder
h = thickness of shell wall

L = length of cylinder
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v = F/Fr

f = frequency

fr = ring frequency = QTrR/Cl

R = radius of cylinder

C[ = longitudinal wavespeed in shell material

The integra! of Equation (17) can be evaluated numerically with the aid of a digital computer.
However, for practical purposes, the curve presented in Figure C-2 can be used for hand
computations of modal densities of cylinders.

For more complex structures a good estimate of the modal density can be obtained by adding
the modal densities of the various elements composing the structure.

) Acoustic Space
2
n (f) = 4f°V (18)
o] c 3 .
0
where
f = frequency in Hz
\ =  volume of acoustic space
c0 = speed of sound in acoustic medium

The coupling loss factors, depend upon the type of structure being considered and upon

r]AB ’
the environment exciting this structure. These factors are treated subsequently.

Many complex aerospace structures can be considered as being built up from elementary
structural elements such as those considered above. A typical example is a shroud and payload
assembly. A study which shows the application of the statistical energy analysis to predict the
response of this type of assembly to a reverberant field is presented in Reference 18. For the
purpose of simplicity and because the principle expressed by Equation (12) can be applied to
any two vibrating systems, the subsequent discussion and presentation of formulae for the
structural response and noise reduction will be limited to panels and shells.



3.2 Response to Random Pressure Fields

3.2.1 Reverberant Acoustic Field — In the case of a cylinder excited by a reverberant
acoustic field, the following expression can be derived to predict the response:

a - e "24F, 1 "2AF . "2As 1 "2AS
o AP P, 29aF 1 T MoaF 2Mya5 1 * N2as

S 2
.1+Spa<9> 19)
p1 psi ?
where
SCJ = acceleration spectral density
2
Sp = external sound pressure spectral density
1
Sp = internal sound pressure spectral density
3

The Noise Reduction is simply:

+
So _ M2as1"2as T Mart"aar TG 0
5 ] >
P3 ToAs,1 "2as . 2AF,1 "24F
29as 17 T2as  2M2aF,1 "t MaF
where

cO = speed of sound in acoustic medium
p0 = mass density of acoustic medium
A = surface areo of cylinder
P = surface mass density of cylinder

c-N



g = gravitational acceleration

MoAf modal density of resonant acoustically fast (AF) modal group
Noas = modal density of resonant acoustically slow (AS) modal group
n3 = modal density of resonant interior space modes (Equation (18))
n = coupling loss factor between the acoustic field and the resonant
2AF, 1
AF mode group

ToAS 1 = coupling loss factor between the acoustic field and the resonant

! AS mode group
Moaf = dissipating loss factor of the resonant AF modal group
Toas = dissipating loss factor of the resonant AS modal group
n3 = dissipating loss factor of the interior space modal group

The moda! density of the acoustically fast modes is given by:

6 : A
0 Y .V -
/ 0 27 c . c 45in*B . .
—a-; 7R3 / [ —7 - —7 <‘ - —V—:———-> }de for v<lt oif Vc>]
0 c
”2AF(‘”:< 0 for 1<v<v_ if v_>1
ncyl(v) (i.e., Equation (17) for v>vc )

where

length of shell

=
1]

radius of shell

=
"
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-

—

———

3 = — 1
R J 12
v, = fc/fr
fc = ocoustic critical frequency = frequency at which the free-bending

wave speed in the panel is equal to the speed of sound. Therefore,
the critical frequency is found from

!
Y
D
6 =y [r] = <,

or
c 2
f o= =0 " B
c 2m D
where
¢, = bending wave speed
D = flexural rigidity _
p = surfoce mass density
c0 = speed of sound in air.

For hand computations, the curve of Figure C-2 can be used to determine NoAF *

The modal density of the AS modal group is given by the difference between the total modal
density and the AF modal density.

The coupling factor between the acoustic field and the acoustically fast modes is given by
(symbols are listed after Equation (20) ):

p ¢

- 0 0
"24F,1 T Zrfe_ (22)

The coupling factor for the AS group (for f >f and when the cylinder dimensions are greater
than an acoustic wavelength) is (Reference 4):r



gy

—_—

——

2

p c
oA, 1 T 2nfgc pos A { 2h s, (F/fc>2+ P9, (Vfc) } 23
where
)\o = acoustic wavelength
Pr = radiating perimeter = 4mR
<4/7r‘)(1-2f/fc)/JF—/fc <l-f/fc) f<0.5¢
9, (V) =
0 £20.5f
C
o (V5) = {(1 - /¢ ) Ln [(1 = 2 )/(1 -y VE )J

+

3
2.‘/ Z3 }/47#’ (- f/fc>/2

For hand computation, the graphs shown in Figure C-3 can be used to evaluate the g and g
functions. ' !

2

When the cylinder dimensions are smaller than an acoustic wavelength, and for f<f , the
following coupling factor is used: '

oS 4
"2a5,0 T ZATT 5 A ( -7 Y ) (24)
The structural loss factors are given by:
= U (25)
Nar T Tas T B

where Q is the dynamic magnification factor at resonance.



The loss factor of the inside acoustic volume can be expressed in terms of the average absorption
coefficient a as:

n = - (26)

In the case of a plate excited by a reverberant acoustic field, Equation (19) may be used to
predict the plate response, if the proper values for the modal densities and the noise reduction,
Sp /Spg , are used. The expression for computing the modal density of o simply supported

1

—_—

plate is given by Equation (14). In computing the ratio SPI /Spa , two different cases must

be taken into consideration, firstly, the case in which the plate is fully immersed in the field
ond therefore excited on both sides, and secondly, the case in which only one side of the
plate is exposed to the acoustic field, such as the case of a panel mounted on the wall of a
rigid enclosure. For the case of the two-sided excitation, there is, of course, no noise
reduction through the panel, and the ratio Spa/sm in Equation (19) is equal to unity. For

T
i

~T

the other case, no substantial differences exist between the expressions for predicting the
[ response of plates and cylindrical shells.

3.2.2 Boundary Layer Turbulence — The procedure for obtaining an expression to
predict the response of plates and shells to attached boundary layer turbulence is similar to
the reverberant field case. For a cylindrical shell, three vibrating systems are considered,
namely, the turbulence environment, the resonant modes of the shell and the acoustic field
inside the cylinder. Power balance equations, similar to Equation (12), can be written for

these systems. These equations can be solved for the energy content of those modal systems,
and by introducing the following expressions;

"
n

p0 Co E
[ Sp(f) = vV A (27)
L
ﬂi W E
" SO(F) = WA (28)
L
It may be shown that the acceleration response spectrum is given by the relation:
S So wP 1
52 = 2 (___.._n " ) (29)
P pS 2 2,3
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Equation (27) gives the sound pressure spectral density Sp(F) in terms of the average energy,
E, within a band of frequency, A, the density of the medium, p0 , the speed of sound, c0 ,

and the volume, V. Equation (28) gives the acceleration spectral density of a structural
system SG(F), in terms of the average energy, E, the mass, M, the band center frequency, w,

and the band of frequency, A.

The terms in Equation (29) are defined as follows:

ch = Acceleration spectral density of shell

Sp1 = "Fixed" microphone (PSD) of the environment

P, = Mass surface density of shell wall

n = Dissipating loss factor of shell = 1/Q

n . = Coupling factor between the acoustic field and the structure

P = Power which is transferred by one unit of S_ to a unit area of the
N2 shell; in3/(Ib-sec) Pl

A more complete treatment of the response to turbulent boundary layer pressure fluctuations,
including the derivation of the power term P , may be found in Reference 7.
1

z
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4.0 EMPIRICAL ANALYSIS
4.1 Review of Empirical Techniques

Empirical methods for predicting structural response to random pressure fields were formulated
initially by Mahaffey and Smith (Reference 19). Following the publication of their method,
empirical techniques were proposed by Eldred, et al. (Reference 20), Franken (Reference 8),
Condos and Butler (Reference 21), Barrett (Reference 22), Curtis (Reference 23), Brust and
Himelblau (Reference 24) and Winter (Reference 25).

Of the above methods, the Franken method has generally been considered to be the most
suitable for space vehicle vibration prediction. The majority of the other methods are based
upon aircraft vibration data, whereas Franken's method is based solely on Titan and Jupiter
space vehicle data. Specifically, Franken found that acceleration measurements plotted in
the form of:

?F-)—(T)— (Mg)- Versus (fD)

gave a general curve as shown in Figure B-1. The symbols listed above are defined as follows:

S.(F) = the mean-square (power) spectral density of the acceleration (g 2/Hz)
U
Sp(f) = the mean-square (powe.r)specfrc:! density of the fluctuating pressures ((psi)?/Hz"
Hg = the surface density of the structure (Ib/in?)
f = the frequency (Hz)
D = the vehicle diameter (ft)

More recently, empirical methods have taken the form of data banks for Saturn V-type structures
(References 10 and 11), wherein acceleration power spectral densities divided by the corres-
ponding pressure power spectral densities are given for various stations along the length of the
vehicle at lift-off, transonic and maximum dynamic pressure., Obviously this type of approach
to space vehicle vibration prediction imposes severe constraints when attempting to predict

the behavior of structures other than Saturn V-type hardware.

Therefore, the objective of the present study was to investigate the volidity of Franken's
empirical method when applied to other experimental data obtained from typical cylindrical
structures. Initially a literature survey was conducted in order to obtain useful vibration data
for a range of acoustic environments. In many cases, although satisfactory acoustic and
vibration data were avoilable, no information was available concerning skin thicknesses and
surface densities. As o result of the literature survey, the following sources of vibration date
were selected for evaluation:



P

° The external MARL shroud (Reference 26)

' The Spacecraft Lunar Module Adapter, SLA (Reference 27)

° Wyle Cylinder No. 2 (Reference 7) /
® Saturn V Skin-Stringer Structure (Reference 11)

° A BBN model shroud (Reference 4)

® Titan | first-stage structure (Reference 28)

° Republic Cylinder No. 7 (Reference 29)

° Wyle Cylinder No. 1 (Reference 7).

Complete details of the above structures are summarized in Table C-1.
4.2 Development of an Empirical Prediction Method

Initially the vibro-acoustic data were plotted in the form suggested by Franken, i.e.,
Su(f) . (pg)? / Sp(f) Versus f * D . These results are shown in Figure C-4, together

with Franken's original curve from Reference 8.

It is immediately observed that considerable scatter exists between the various experimental
measurements. More surprising is the fact that the Titan | data from Reference 28 do not lie

on Franken's suggested curve, even though the curve has been suggested as being typical for
Titan I structure. There are two probable causes for the scatter evident in Figure C-4.

Firstly, the acoustic environments include static firings, near-plane waves in a free field,
launch acoustic environments, and reverberant acoustic fields. Consequently, the environment-
to-structure coupling efficiencies (or joint acceptances) will be different. Secondly, the
damping properties of the various structures vary significantly; typically, the damping will
cover the range from Q =10 for skin-stringer=ring frame structure to about Q =150 for thin
homogeneous sheet structure.

The possibility of a better collapse of the experimental data was investigated in the following
manner. It was stated in Section 2.0 that Powell's result (References 1, 2 and 3) for acceleration
response may be shown to be given by the relation:

Su(w) 1 d o[ ‘mn -
S (w) - (Rg)? Z “mn ( W ) " en (1) (30)
P m=1

n=0
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Now when the modal density is relatively high and the frequency separation between modes is
low, the modal response bandwidths may increase so that they overlap. In this case the
number of modes N having resonant frequencies within the bandwidth Af centered at
frequency f is:

N

Afen(f)

f n(f)
Q

where n(f) = modal density.

If all N modes have approximately the same response level, then the total mean-square
response is approximately N times the response of any one mode.

Now since all N modes are resonating within the bandwidth Af , it may be assumed thot:

x
N
—
€
3
>
~—
|
O
[N

and it may also be assumed that 3mn' Jr:: (w) and j:(u) are approximately the same for all

N modes. Thus Equation (30) may be Opproxi;nc‘ted by:

S.. 3 Q%% (v
U mn mn
= = - - N
P (Mg )~
_ 3 QA a2 .
(kg )?

Now from Figure C-2, it may be observed that in any frequency band, n(f) for a cylindrical
shell is equal to some constant Cl (proportional to frequency) multiplied by [/h fr where

[ is the length of the cylinder, h is the skin thickness and fr is the ring frequency. Thus,

Equation (31) may be approximated further to:

% h ¢
—_ 2, = . e — o 2 .
Sp (Pg) 1 3mn Q fr Jmn("’) C] (32)
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Since fr is proportional to 1/D, this suggests that if the following parometers are plotted,

S..
S—U .« (ng)® - ;— Versus (fD), the experimentol data should show some degree of
P
collapse.

The vibro-acoustic data were re~plotted according to this relationship and are shown in
Figure C-5. While a slightly better collapse of the data is evident, the scatter is still quite
large and therefore there seems little advantage in plotting the data in this manner. It was
therefore decided that Franken's original response parameter, S../S -(ug)? , should be
retained, vioe

In fact the large scatter in the data shown in Figure C-4 is considered to be due primarily

to the variation in damping or Q values. This is illustrated in Figure C-6 which shows three
normalized response curves (of identical shape to Franken's curve) corresponding to Q =3,
Q =50 ond Q = 200. These curves are based on Equation (31) which shows that the
acceleration response is directly proportional to Q when the modal density is relatively high.
Thus an increase in Q by a factor of 10 results in an increase in normalized acceleration
response of one decade. The lower curve in Figure C-6 for Q = 5 is in fact Franken's original
curve (Reference 8); this value of Q seems reasonable for the closely-spaced ring frames and
stringers utilized in the Titan | first stage. If the curves shown in Figure C-6 are overlaid on
the vibro-acoustic data of Figure C-4, the specified values of Q are observed to be quite
realistic for the structures considered. For example, the normalized response of the Saturn V
skin-stringer structure is generally much lower than the response of the Wyle cylinders over
most of the frequency range. The damping for the skin=stringer structure would typically be
around Q = 5 to Q = 10, whereas the damping for both Wyle cylinders was determined through
measurements in the laboratory (Reference 29) to vary from Q = 100 to Q = 200 over much of
the frequency range.

It is therefore suggested that the normalized response curves shown in Figure C-6 should be
utilized for the prediction of acceleration response of cylindrical vehicle structures.

4.3 Empirical Prediction of Acoustic Mobility
Acoustic mobility is defined as the ratio of the velocity mean-square (power) spectral density

to the blocked-pressure mean-square (power) spectral density, i.e., S.(F)/Sp(f) . The
u

blocked pressure is simply the true surface pressure and thus includes the effects of pressure-
doubling. The normalized acceleration spectra shown in Figure C~-6 were converted to Acoustic
Mobility spectra as shown in Figure C-7. The ordinate of Figure C-7is SG(f)/ Sp(f) e (Hg)?/D?

and has units of (in./sec)? /ft2 where D is the vehicle diometer in feet. The abscissa is
again frequency times diameter, fD . For each value of Q shown in Figure C-¢, the upper
curve was utilized in deriving the acoustic mobility spectra shown in Figure C-7.
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5.0 CONCLUDING REMARKS

In many practical situations it is necessary to predict-the vibration response of a structure to o
random pressure field. In certain cases the acceleration response of a final hardware design is
required, while in other cases the acceleration response of one or more preliminary designs is
required. Often, the selection of a prediction method will be governed by the particular
requirements of each situation. For example, the empirical curves of Figure C-6 will be most
suitable during preliminary design phases where trade-off studies involving skin thickness,
surface density, and ring-frame and stringer construction versus honeycomb sheet construction,
may be rapidly achieved. The empirical curves may also be used for evaluating a final design;
however, at the final design stage it is also advisable to carry out computerized analyses
utilizing either modal analysis or statistical energy analysis or both. These analyses may be
repeated for a range of damping values, such that structural Q's can vary from mode to mode,
if necessary, in the modal analysis, or can vary between third-octave bands in the statistical
energy analysis.

Since both analytical methods have significant advantages and disadvantages, the optimum
analytical approach to adopt when predicting vibration response cannot be rigidly defined.
Previous studies (Reference 7) have shown that in terms of the final accuracy, both analytical
methods can be considered satisfactory. For a typical structure excited by a random pressure
field, the basic analytical approach to be adopted is governed primarily by the following:

1) The particular requirements involved. In some cases, the acceleration
response is all that is needed, while in other cases both the acceleration
response and the noise reduction might be required. ’

2) The frequency range being considered. Low-order modal response of -
the structure may be required in one case while in another, higher-order
modal response may be required. In yet another case the complete
response spectrum may be desired.

3) The type of structure being analyzed. The critical parameters to be
considered here would include: modal densities, resonant frequencies
and mode shapes. JFor example, if the mode shapes were difficult to
define, but sufficient information was known concerning modal densities
(which are additive), then the energy method would be suitable.
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APPENDIX D
DESCRIPTION AND USAGE OF COMPUTER PROGRAMS
Four computer programs and one plotting program developed for this study are described in this

appendix along with the complete program listing. The computer programs consist of the eval-
uation of the following equations:

° Input Impedance of a Finite Beam

. Input Impedance of a Ring

) Input Impedance of an Unstiffened Shell
° Input Impedance of a Payload Structure

A type output for a beam impedance is also presented at the end of this appendix .
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WYLE LABORATORIES
COMPUTER PROGRAM DESCRIPTION

Program Number : 73/1001

Author :  K.Y. Chang
Date : 3 August 1973
Source Language : FORTRANIV-H
Computer :  XDS Sigma 5

PROGRAM TITLE
Beam Impedance Evaluation Progrom

PROGRAM FEATURES

Given a suitable geometrical and material parameters of the beam-type structure,
this computer program computes and prints the input (velocity) impedance over the

specified frequency range at logarithmic increments. The results are stored on o

magnetic tape for plotting.

The equations used to evaluate the input impedance have been derived and are given

as follows:
p— 2 .
2 (o) T (%)
1 = ¢m([0) wm CQm “m
ZW = 77 2
m= O.SZPAwfn ]_(w)2]+ | (u)2
i Yo Qrzn “m
where

@ = sin mmx
m 4
2 El m2 774
© m A 4
P /
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and w represents the angular frequency, Qm denotes the dynamic magnification factor

for the m mode and E, p, A, 1 and [ are the parameters of the beam.

This program consists of two subprograms. The first one computes the impedance value
and the other one plots the computational results.

HARDWARE CONFIGURATION

The following computer hardware configuration is required to execute this program:

. Sigma 5 CPU

° 16 K words of core storage
) 1 Magnetic tape transport
° 1 Card reader

° 1 Teletyper

° 1 Line printer

INPUT INSTRUCTIONS

The input date consists of two input cards punched as follows:

Card
Columns 1-10

Columns 11-20
Columns 21-30
Card 2

Columns 1-10

Columns 11-20

Columns 21-30

Columns 31-40

Columns 41-50

Columns 51-60

Columns 61-70

Number of frequency points to be computed in the specified rc;nge .
The maximum number should not exceed 200. (Format 110)

The lowest frequency in Hz . (Format F10.0)

The highest frequency in Hz. (Format F10.0)

Young's Modulus of beam material in psi.(Format F10.0)

Weight density of beam material in Ib/inch® . (Format F10.0)
Cross=section area of beams in inch?. (Format F10.0)
Cross-section moment of inertia of beams in inch* (Format F10.0)
Length of beams in inch. (Format F10.0)

Dynamic magnification factor.(Format F10.0)

Location of point-driving force in inch . (Format F10.0)
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OUTPUT RESULTS

The computational results are stored on a magnetic tape numbered 1. The printed
output have the following form:

First several rows consist of —

° Total weight

° Static stiffness

° Fundamenta! frequency

° Impedance for infinite length beam

Remaining printed output consists of —

° Ist columns represents the frequency values

° 2nd column represents the normalized frequency values

° 3rd and 4th columns lists the real and imaginary parts of the impedance values

° 4th and 5th columns show the error criterion and number of terms in the
summation.



o

WYLE LABORATORIES
COMPUTER PROGRAM DESCRIPTION

‘Progrom Number : 73/1002
Author : K.Y. Chang
Date : 3 August 1973
Source Language : FORTRAN IV-H
Computer :  XDS Sigma 5

PROGRAM TITLE
Ring Impedance Evaluation Program
PROGRAM FEATURES

Given a suitable geometrical and material parameters of the ring frame, this computer
program computes and prints the input (velocity) impedance over the specified fre-
quency range at logarithmic increments. The results are stored on o magnetic tape
for plotting.

The equations used to evaluate the input impedance have been derived and are given
as follows:

where

2 El 1 n?(n?-1)2
[W]
n PA R4 2 43

n

and w represents the angular frequency, Qn denotes the dynamic magnification factor

for the nth mode, and E, p, A, 1 and R are the parameters of the ring.

This program consists of two subprogroms. The first one computes the impedance value
and the other one plots the computational results.
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HARDWARE CONFIGURATION

The following computer hardware configuration is required to execute this program:

° Sigma 5 CPU

) 16 K words of cores

° 1 Magnetic tape transports
° 1 Card reader

° 1 Line printer

INPUT INSTRUCTIONS

The input data consists of two input cards punched as follows:

Card 1
Columns 1-10

Columns 11-20
Columns 21-30

Caord 2
Columns 1-10

Columns 11-20
Columns 21-30
Columns 31-40
Columns 41-50

Columns 51-60

OUTPUT RESULTS

Number of frequency points to be computed in the specified range.
The maximum number should not exceed 200. (Format 110)

The lowest frequency in Hz. (Format F10.0)

The highest frequency in Hz. (Format F10.0)

Young's modulus of ring material in psi. (Format F10.0)

Weight density of ring material in Ib/inch® . (Format F10.0)
Cross=section area of rings in inch? . (Format F10.0)
Cross-section moment of inertic of rings in inch* . (Format F10.0)
Mean radius of rings in inch. (Format F10.0)

Dynamic magnification factor. (Format F10.0)

The computational results are stored on a magnetic tape numbered 1. The printed
output have the following form:
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First several rows consist of —

Total weight

Static stiffness

Fundamental (lowest) frequency
Impedance for finite length beam

Breathing (resonanc) frequency

Remaining printed output consists of =

1 st column represents the frequency values
2nd column represents the normalized frequency values
3rd and 4th columns lists the real and imaginary parts of the impedance values

4th and 5th columns shows the error criterion and number of terms in the
summation.



1.0

2.0

PROGRAM TITLE

WYLE LABORATORIES

COMPUTER PROGRAM DESCRIPTION

Program Number
Author

Date

Source Language
Computer

. 73/1003
K.Y. Chang
3 August 1973
FORTRAN IV=-H
XDS Sigma 5

Unstiffened Shell Impedance Evaluation Program

PROGRAM FEATURES

Given a suitable geometrical and material parameters of the cylinder-type structure,
this computer program computes and prints the input (velocity) impedance over the

specified frequency range at logarithmic increments. The results are stored on a
magnetic tape for plotting.

The equations used to evaluate the input impedance have been derived and are givenas

follows:

and

where

KIND >

n=0 m=]

2mRpht

¢fn (x)) M,
1 + K
2 mn
Zmn wmn

© o ¢2 (x )
2 2 ——;
0 m=1 mn “mn
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- . 0
¢m(x0) = sin ;
= [ )
“mn “mn Q? mn umn
= mn
mn - w 2 |2 . 1 ( w )2
(Umn) ann “mn

in which w  represents the angular resonance frequency and Q . is the dynamic
mn m

magnification factor of the (m,n) mode; and w represents the angular frequency
and E, p, h, a and f are the parometers of the shell.

This program consists of two subprograms. The first one computes the impedance
value and the other one plots the computational results.

HARDWARE CONFIGURATION

The following computer hardware configuration is required to execute this program:

° Sigma 5 CPU

. 16 K words of core storage
® ] Magnetic tape transport
° 1 Card reader

° 1 Teletyper

° 1 Line printer

INPUT INSTRUCTIONS

The input data consist of two input cards punched as follows:

Card 1

Columns 1-10 Number of frequency points to be computed in the specified range .
The maximum number should not exceed 200. (Format 110)

Columns 11-20 The lowest frequency in Hz. (Format F10.0)

Columns 21-30 The highest frequency in Hz. (Format F10.0)
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Card 2

Columns 1-10 Young's modulus of shell material in psi. (Format F10.0)

Columns 11-20 Weight density of shell material in Ib/inch® . (Format F10.0)
Columns 21-30 Poisson's ratio of shell material. (Format 10.0)

Columns 31-40 Thickness of shells in inch. (Format F10.0)

Columns 41-50 Radius of cylindrical shells in inch. (Format F10.0)

Columns 51-60 Length of shells in inch.(Format F10.0)

Columns 61-70 Dynamic magnification factor. (Format F10.0)

Columns 71-80 Location of point=driving force in inch. (Format F10.0)
OUTPUT RESULTS

The computational results are stored on @ magnetic tape numbered 1. The printed
output have the following form:

First several tows consist of —

° Total weight

o Static stiffness

° impedance for finite plate

° Fundamental frequency

° Breathing (resonance) frequency

Remaining printed output consists of —

° 1st column represents the frequency values

° 2nd column represents the normalized frequency values

° 3rd and 4th columns lists the real and imaginary parts of the impedance values

° 4th and 5th columns shows the error criterion and number of terms in the
summation
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WY LE LABORATORIES
COMPUTER PROGRAM DESCRIPTION

Program Number : 73/1004
Author : K.Y. Chang
Date : 3 August 1973
Source Language :  FORTRAN IV-H
Computer : XDS Sigme 5

PROGRAM TITLE

Component Package Impedance Evaluation Program

PROGRAM FEATURES

Given a suitable parameters of the point=-mass system, this computer program computes
and prints the input (velocity) impedance over the specified frequency range at

logarithmic increments. The results are stored on a magnetic tape for plotting.

The equations used to evaluate the input impedance have been derived and are given
as follows:

and
NNV

in which w represents the angular frequency and M is the total mass, k is the
stiffness, ond C denotes the damping of the system.

This program consists of two subprograms. The first one computes the impedance value
and the other one plots the computational results.
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HARDWARE CONFIGURATION

The following computer hardware configuration is required to execute this program:

) Sigma 5 CPU

° 16 K words of core storage
) 1 Magnetic tape transports
) 1 Card reader

° 1 Teletyper

° 1 Line printer

INPUT INSTRUCTIONS

The input data consist of two input cards punched as follows:

Card 1
Columns 1-10

Columns 11-20
Columns 21-30

Card 2
Columns 1-10

Columns 11-20

Columns 21-30

OUTPUT RESULTS

Number of frequency points to be computed in the specified range.
The maximum number should not exceed 200. (Format 110)

The lowest frequency in Hz. (Format F10.0)

The highest frequency in Hz. (Format F10.0)

Total mass weight of the payload structure in pounds. (Format F10.0)

Static stiffness of the paylood structural system in Ib/in. (Format
F10.0)

Dynamic magnification of the payload system. (Format F10.0)

The computational results are stored on a magnetic tape numbered 1. The printer output
has the following form:

First three rows containing —

° Total weight
° Static stiffness
) Fundamental frequency



J——

Remaining printed output consists of —

Ist column represents the frequency values
2nd column represents the normalized frequency values

3rd and 4th columns lists the real and imaginary parts of the impedance values
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WYLE LABORATORIES
COMPUTER PROGRAM DESCRIPTION

Program Number : 73/1003
Author : K.Y. Cheng
Date : 3 August 1973
Source Language : FORTRANIV-H
Computer :  XDS Sigma 5

PROGRAM TITLE
Impedance Plotting Program
PROGRAM FEATURES

The program plots the impedance results recorded on o magnetic tape which is obtained
by Program No. 73/1001 through Program No. 73/1004.

HARDWARE CONFIGURATION

The following computer hardware configuration is required to execute this program:

. Sigma 5 CPU

° 16 K words of core storage *
° 1 Magnetic tape transports

) 1 Card reader

° 1 Teletyper

® 1 Line printer

° 1 Calcomp plotter

INPUT INSTRUCTIONS

The digital tape recorded from Program 73/1001 must be mounted on Unit 1. This
program executes by itself and no data card is needed.

OUTPUT RESULTS

The impedance data including the modulus and phase angular will be plotted on log-
log scale using frequency as the abscissas. No printed output results.



Td+1AS[A

XyWieis

v/ AN
DUeL/SSYWY

I GE 81

00s0=fA

veld®4
s 2SSVYiY

CZ715%008 (4) 4 742213 423DNYQ3dW] WY3IH JLINIINIW'XE //
vZH 121301 °0384 IVINIWYANNA T XOT//

WY38753744]1S L]3IM (00w ¥gO

INJZET 1 f9°2137,42SS3INJIILS JILYLS X017/
WU 1 fReZT I m YT EM FX02) LYHEG S 00N

IRETRR-L

SSYWY# [ *9RES L[ 34

(1d) LYy0Sedyay 4y=QVv«00

sqepy 39

1d/S4#S320Ge0=5 4

v/ ld

)Y =S4

(2Xy) L¥OSe nv

(XY} LuDSsdny
V3dY/QV/1Vve3ven)y

SWY38 3ILINI3 48 SHILIWHVA

' (1)1v814nUIQ*NIWOS

dN*l

4VeOY YLy vayY/ay Y (0217501)QV3d
e 4000RIBILIVHNGY 02
. (L3IN)IH)dX3®(IN) IH €

s{dN)IH
T+AN® AN
*1 £ @0

(dN)LAVEI47INIWU 4= XYWD4) DGV =040

¢ ZH ) ADN3NO3¥4 ONIQN3
( £H ) AJN3INU3HI YNILYUVLS
SINIGd ADN3ND3¥4 30 HIBWNN

(NIWG4)98TVeNIWD 4

aXYWOD 4
sNIWO 4
- &Z

XYWO4'NIWOJ aN (0V1°S0T)QV3IY

1
|
|

i AY/IV/IV/ Ve 3YR00* 8 441 LS
o Y3HVY#QVeIYeSSYLY
OO .. be9BE/QVEQY |
_ I . NI )} 32304 ONJAINQeiINIGd 40 NOILYIEY = 47V

¥QLIVd NOILVIIAINOYW JDIWYNAQ = ov

o U ( NI ) SHY3Q 3@ HION3 = 1y

C weeNI ) SWYIS 49 VILNINI 40 LININGW NBILI3S SS@y) = 1v

—_— . . - { geaN] ) SWy38 _J0 Y3INY NEILJIS SS6NF = YIMv

( E*eN]/87 ) IVINIALYW 40 ALISNIQ LHOJ3M = qayv
1S ) ALIDIASYR J@ SNONUAW. SNNGA e 3y

+
i
!

VOLUOUOUULVOLVO U

QLUOLUUVUL

(0*0142°¢0Vv]1) JviNagd 011
Q00 (1) IH

GEG9deLT
100

e N
nl*e=1d
*QsuM3N

0Ng=ayu3IN

QUTsXVYWH

(001)S
(102)0t102)1HrL102) IH
12°WL

ONVHI *A®X AR (3
SWwY3g 346 3INvI3dwl LINIdd ONIATNC =
: LQJL/7EL *gn

NEWWED
NEWWOD
X3 VdWe)d

48713A370
WYNOUME
NYSHOMd

cuuuu

—“M IO OO0

D-15



N3

ddiS

CANCL=] 70100 (1) 3aluw
CANTL=] 70 ) ) (1) LM
CANYIsf ) IH) (L) 3Livna
4N (1) 3Lfuv

T ONI™M3y

[=dN® 4N

. 3NNTLNGD 02

(il

SL%) VIRe0139GeSTA200( 17001 4ey) 4 ene01 40 ®U3 1 f6l)LVWHO4 001

WEILYNPLZowy LI IH? | (O0T¢80T)3L]uM

S3/(1) IHmmy

(I)IH®(T=1)IH

o o (LL)OYHIVE(T=]11110
(£Z)V3Y =(T1=1)Y

B {1/(0%0¢001)227
(2SSYWY/ 4Y F00°0) X 1dWI*Z 2977
INNTLNGD

g2 6L 69

(000 14]1S)X \dI®* 27

(L)Y IU/2SSYRYR 441 1S

o B} : L9979 (t=1) 41
INNTLNGD

GrOT#0T  (HH3IN* W) 41

Grageng (T=4NBNI) 41

e o . _¥+1nENI=ineNT
nenvgE L (Hy3Ne3Livy) 4l
{2Z/WZ)SHY2= LYY

01 91 @Y (01 i1 W) 41
“““““ o ) We+ZZe22
LIACHAIX1GWI# (020 2MY /WS I X 1dWIm T

- CQu/ JY==1A
Q¥/HY ®MA

. L ‘ . lye [yrHYeHE=QY
ov/iYely
I4eJ4=00¢Toyy
My/s4Ysy
(ZMV ) LHOSS MY
AV RARYSEMY
2HYRZHYR O NY
WY RV e 2Ly

IV [deyeY
(WI1V@I4eKY
— 3INNILINGD
(WSINIS*WS

Ad# (M) 1VETII=KS
L9 81 69
(W)S?US
9GIGEIGG (XVWA=X) 4]

reyy

L+ sy

Daingn]

0=

. (Ostener)nz7
dve 4y s 4y

(L) [HR Id*0s2% 4v

4NCLx] 02 AN

HARNAR(])S

CIAINIS®NA

1

8

{9
9S

S5

*S
01

St

61l
8Tl
L17
911
g1t

D-16



e e e e e ¢ NI ) SON[Y 49 snlavy

O s N

(Ge0eNeCI=Z7

Jvndyxe 4y

(1) IH® [ d#Oe e 4V

ANT1=] 02 04

D02/ SSYWYaEZSSYIY

(Z4ZH 1021370389 ONJHLIVINE X2/ /

1G00nRl 4) 1 7qe2137 12 3INYCQ3dW] WY3H JLINLIINIWTXE //
vZH s t28344030343 IVINIWYANNS *XOT//
INIZHTY 74421 37,2SS3IN441LS JILVLS, XOL//

R RS AT GO ELYRS (sEANE - ERReIeL

3IPNYIGISA03411SL13M (CO%*BOT)3LINM

SSYHY#1*98E=L]3m

. oo (1d)AHOSHNYeVY Y IYY#QYa00* v Y3y
1d/¥YV¥/7(QV¥/73V) 1H0S#+0G5*0°34

enyeL2He0nS 4

(2XVY) LHOS= MV

(9XVY) LHOS=CHY

NYY/YINY/QV/ IV R3VRaY

. Yyeyysyyeyyshyy

GTeU/VY/VY/VYY/]YedYedd]ls

- Y3IYveQyevye [ 4e00°2eSSYHY
1+98€/70v=Qy

HELIV4 NOILYIIAINOVW JIWYNAD ov

S e - ¢ 2eaNI 7 SONIM 40 Y3¥Y NOILI3S SSE¥D
C E*eNI/87 ) IVIN3ALYW 40 ALISNIQ LHOI3M

e : { 1Sd ) ALIJILSYI3 46 SNINUGW ONNOA =  3v
SIWVY¥4 ONIY¥ 48 SH3ILIWdVA

[ ]
L ]
t weeN] ) SONIY 40 VIL¥3INI 39 ININOGW NOILO3IS Sseud *® 1v
L]
[ ]

OVYIYVYIIYrYINY QY 3y (021¢SOT)QYIN
(8e0148) AvyHNE S

((IAN)IH)GX3®(3N) IH

(J)LAvE 142U 4Q+NIWOUS® (IN) TH

T+ 4N AN

. . : dN'i=] € §Q
(AN)LYB 14/ INIWU 4= IXVHOA) VOV I =040
(NIWD3)9@IYeNIWG 4

t ZH ) AJDNINO3YI ONIANI =XVilD4

( ZH ) ADN3INO3Y4 ONILYYLS =NIWOJ

SINIGd ADNINOIY¥4 46 HIBWNN = dN
L ]

XYWOSNIWUI AN LOIE7SOTICVIY

(3°0142°011)ivHE04

0® 4N

GEG92HSInieE"]d

100°0=yy3y

QU2e YN

(002)07(00211871002) IH NEWWE)

LTINC X3dWE)

INYHD *A®X AR (3d4g13A37
SoNId Jy IONVQAdW] AINTOE ONIATNMQ * AVHOBLd
200 /EL BN WVNOEHY

2
1
1
S

ey
€

o1t

[SRGRUNSNS]

GUUUL U

—~ ™M F OO~ DO

D-17



(INFI=]701)10) (b1 3LIyM
CANTL®IZCE)IN) (1) 3LIym
(ANTE=TPCLM M) (T) 3Llum
AN (V) 341MM
¥ gNIM3N
INNILNGD 02
(ZZ)9VYW]V=(])0
(2Z)v3y (1)
- ) i . (it a0 1
T Ne0TATGIGEAZ A 174201401} 17900540204 146])YWNP4 00T
NOILVYTZZemy U] TP (QOT¢8O0T)3IL1IUM
S3/01) IHery
e i 4L/10%0f0eT)927
o o T Tt (2SSYHY/ 4Y 1U0+0)I X TdWIeZZ=22
i INNILINGD §
GrOT 70T (HMINe N) 3] %
900G (uNINeILYY) 4]
(22/NZ)SBYI=3lvy
0T @1 @Y (01 17 N) 4l
_ NZ+Z2%72
{000 ND)XTIWI/NI®NZ
(TAPHAI X IdWIAaNZ
QY/ [H=e]A
QU/HY wHA
lysiy+Hueuy=QY
VA FSe-LAE-]
24vy=2~veyy
My# 4v® ][y
ENV/00% 1+00% T*NS
(2MY) LHOS® My
(S2NY+0 0T ) /(0o TaNY)IR(0TacNY ) RSNV ENNYELNY
NYRNVSENY
(N)lv@ld=ny
T+NsN O

SIee




ddfSd (OTn %0TV) 3L Y+ 89

) ] [d/7VVY/0¥Y*00G*0*d4 LS
AWV/(VYV/HY) LHOS# Dy eGLE*O8S 4 99
(Z716°0%9(4) ) *He2T37 s 3IDINYAIIW] 3ivId JLINIINL *XE// 1 &S
INI/Z9T s 7422137385 ANSAIILS JILVLISY I XNT// 1 S
Y 1T s IHY T 3M, TX02) LvWNEg 4 00N €S
3IvId 44115 4137 (QON 80T ) 3LIym 2s
s . SSYWNY#1*9RE= | [3M 19
G2elan(YY/HY)®(IY/VY)IHUSaHY»IyR0Se2n44])S 0S
) ] (0U*E) LYOS/IVeHYAHY#Qv*00* #e3iVd e
QYeHY* lynvYe [de00*EaSSYWY |
) ) YV/IovV=0 444 i*
. (JV) LHUS=DY 9n
e o o B (AV#AY=Qe})/7QY/3Vs)Y _ g e
(O )LIYOS/YY/HY=HY 12
I R B . L*9RE/QVYsQY R (X ]
' J 2
_ L e . } _ t N} ) 30484 ONIATHMQO=ANIOGd 40 N@ILYIET = IV o) | £
HO4IDVY34 NOILYDLJINOYW JIWYNAQ = Ov J (o} ]
— — e i o AN Y ST13MS 40 HUONET e v 3. .. .eE
{ NI ) ST13MS 40 SNIQYY = vy J g8t
B ] el o ¢ NI . S§7713HS 49 SSANNJIHL = HY 3. o Le
( E*eN[/87 ) IVINILYW 20 ALISN3Q LHBI3M = qav o] 9€
_ el _ ) e € Isd }  ALIDILSYT3 1@ SNINUEW ONNBA = 3v ) -1 e
S113HS IVIIHANIIAD 3LINIA 4@ SY3ILIWNYI w 4€
£E
AV OVIVIYYIHYIAYIQY L 4y 102T1°SOT)QVY3Y -1 N
. i o o R i (0«01 48) JyHuQ4 02T o o 1~
(CIN)IHIdXI®(INIIH € 0 O
- . el o ) (1)1VE4eUIQ+NIWOI (IN) IH 62
T+ 4N® 4N 82
e e e e S dN’le] E Q. . __. ___ A2 .
(dN) LY@/ INIWO 4= XYHD )88 1Y) =0 4Q 92
L ) B o - (NIWO4)981VeN]I WO 4 - -
J %2
e e - o . { ZH ) ADNINODIUS ONIQNI =XVWO 4 3 €2
{ 4H ) AIDNINOD3¥4 ONI1LUVLIS eNIWDJ J 22
—— e e . SINIGd AININOIYS 460 YIBWON = - N .[:‘w.‘ :-_;wmi‘-, .
B XYHOS'NIWO47dN (OVT*SOTIQAvY3IY ] 61
(0O°014€ 7011 ) LYWHG4 OTT 8l
e ) Q0*U=(1)]H Ll
1o 4N 91
e N ] GEG926SINIEr]ld gl
100+0=2443Y LA
002*443N €l
00 TeX YL a1
1GsXywr 11
IVEYOY IV IVY Y FAYCAY P IV [ d/1T1IMS/NEWWED ot
(001)S NOWWED 6
(00T 7T4%)IM (TSI NEWWED 8
(102)I04(T02) U (T102) [H NEWWE)D L
LLINZ2 WL X 3NdWRD 9
P S
ONVHD *A®X AE (13<4613A3N b} "
ST1134S 468 3INVQ3IgwW!l LINIBd ONIAINO = LiVMOENd o] €
€00 /€L *@N HYHDANd p] 2
] 1



T+iNtNLs1NEN]

wlenl o€l (yNI=131YR) 4]
(NZ/WZ)SHVIsTl3ivy

0t g1 gu (L2 *L1* Wl 4]
WZ+NL=NDZ

._>~mw.xJazu'.c.c.3<\x<\rm.x4uru-x~

1SHAeuABMA
G-THR-LLE WY

CH/74Y ®NA

IS RR-RE-T-LX-T-LXel
Ov/IHsly

[y Jy=00° Layy

MY/ 4Ys ]y

ANNTINGD

(MY N )INWOIYS 1IVYD
%9 04 89

(NI )Msmy

E9¢c929 (X3ANI) 41
€9 81 69

(HWSINIS®HS

Ad# (A} LY@TI42HS

LS 61 @9

(H)IS=WS

9G G eSS (XVWXeN) 4]
el

Texey

O=iNnaNI

O=>

(0s0¢00)sNZ
{eX30ONI

(N®N) lVvB813/7G20¢S2°0°ND
€S 64 89

(r)osng

SN LS (XVYWrM=) 4]
T="sN

{efmpr

Osr

(0e0*Qe0)mw722

T8 XViW

OwX3ONI
CI)IHe[de00e2= 4y
AN¢Is] 02 @@
Q0*0=L1SHA

Mye (X))

(MY INTW)NWOFSS VvD
As i

XYWXeLsx G Q]
(N®N) LY8T147S2¢0+S2¢08( ")
Ow @1 &Y (1 eu3s M) 41
b="uN

XYW oLs(" SS9 Q0
CGe0s(1)
HA#MAR(1)S
CLAINIS®HA

Td+1A=1A

XYwWdels] Cg
nneQ(»yra

AV/ 1Mve ] d4=14

(/o247 120389 UNIMLIVIaH . rXOT 242157, 20354 TVINIAVOND S IXC L) fVhse 4

[

(-

et

JS——, [t [R—— R

£l LT3

*9 %01
€9 €01

29 101
LS 00t
9S L6
1 513

S e6 .

O€ 16
€S 68
s L8

18 S8

01 - 28

S* LA

O 1L

GE g9

Niw 65



N7
Nanl 3N
VYy/)Jvarysuy
(ErMVY)iyuSespy
{ (Aves])
\A><n.a|.><u.:..nz<.am.on:xz«.am<'m<+:xz<\mx<-mx(t,><‘><u.ﬁv-uz<
ANV RENNY I UANY
SAVLENYSEANY
NYENYSZNY
MY #HYEIHY
Y/ VYR dRiYENY
IN)LV@a=NY
(VRS ' MELIN
IVIEYIOVEIVIVY ‘MY PAY QY 3V [d/TIIHS/NOWKED
(MYIN‘HINWO3N4 INTLNGHENS

UN3
d6is
(AN“Ee[fL1)70) (1) 3llum

R 4

(ANTE=TfCT)IN) (1) 31lum
(IN"E=]7C1)IH) (1) 3Liym
AN (1) 3ilym

I ONIM3Y

T=dAN® 4N

(10 19ET 017,
C#SLfa)_ 40T 4TS EI32 0 190147 ) 49017, %04 4 f61)LlYHYGS
NOWEILYNIZZrmy LI [HrL (00T 801)311ym
- XYWWe W
0344/ 4yspmy
(1) IHe(T=1)1]H
(L2)0YWIVY®(Te«])D
(£Z)v3AN =s(1=1)1Y
22/7(0¢070+1)2727
(SSYWV/ 4Y'0°0)X\dWIle27227
(00744115 /SSYRY)IXTSWI+Z2Z227
INNTLINGD
4 Gl A9
(0*Uf4411S)X1dWI222
(£Z)1¥34/SSYWYR 44] LS
L9°'9 (1=1) 41
: INNTINGD
Ge0T 0T (NMIN= N) 41
heneg  (y¥3IMe3LlVE) 41
CLZ/NZ)SHEY)=44vy
01 91 gu (01 *17* n) 41
NZ+2L®271
(02U 'ND) X 1dWI/NZENTZ
WEXYhd (I 1710 XvWk) 4]
AONTINGD
GTeOE’QE (yyIN- W) 41
GlenGryy (V=LNANEY 41

P S [ ot . -

e e P —1 ———— ——

¢

66

00°*[*LSHA 02

00

St
w1

¥

Oe-tumMm T
i v vt v

~S UM 2O NDO O

€S1
2st
161
oGt
enl
gnl
it
9n1
Gel
LT
EvT
2et
X2
O»1
6€1
g€l
LET
9€1
Gel
M
eel
21
1€1
o€l
621
g2t
L2t
921
gl
w2l
g2l
22l
121
nat
611
el1

D-21



(9207 3°G°513271( 17901 474) 41 *9°0(d7.:%0U3

ang3
d815
(INFE=TeC])N0) L) 311y
(INCEs]ec DY) (1) 310MH
CANCL=T 0 IH)Y CT) FLIe+
AN (1) 3LlIym
1 ONI™3y

3NNTANGD 02
(ZZ)SYAlVYe(])T1Y
(Z2)v3H (1Y

1f6]) LvWNE 4 001
ZZ*¥YP(L)]IH?L (O0L’801)311uM
S47(1) [HemyY
21/7(0*Q*C*1)e22

(AY/AVe V)X TdWI/Z L0070V )1+ 27227

(WY#3Yf0*0)X1dWI/(0*Q70*1)222

([)IHw]de0e2™ gy
ANfIes] 02 @q

(/779213 ¢,20344 TVYINIWYANNSs *XOT7/ i

#2137 ,2SS3NJ411S J14VIS*X01// 1

. 197

VOSSO S, S - 1 B |

W3LlSAS 3Hl 46 ¥BLIVJ
{ NI7BT )

WILSAS 3IML 48 SSINJIILS DJILviS = v
H3LSAS 3H) 4Q_LIHOIM SSYW Tviel = Wy

1ol =IHYT N X02) LYWYES O0%
S4734411S°113M (00%BOT)3L1HM
SSYWY# 1 *98Em L] 3M
[d7(WY/XY) LHCS# G054
AVE 44118
HY=SSYWY
DY/ (WYeMY) LHOS=DY

NOILYIIJINOYK DIWVYNAQ = ov

713060 1GdHSYQ-ON[¥dS=SSYu

uUoLLLL

Uv Ry sy (021 /SOT)QY Ry
(00T 48) LyWHQ4 021
COAN) THIAXI(4NIH E
(1)AvEI jeU4Q+NIWO A (IN) IH
T+4N= 4N
dN’is] € @Q

(dN) LYBT147 (NIWE 4= (XVYWDA) V0TV ) =0 4]

{

H ) AJNINOIHS ONIQNI sxvYWO 4
( LW )
SINIId AININUINA 30 HIEGWIIN = dnN

(NIWO4)DE8TVeNIKWD 4

AIDNINU3YS INTLNVLS =NIWGS

vUuULwuUu U

XYRUAONIWU 470N (01T 7S0T)QAv3IY
(1°0142°01 1) 1vWagd UL

O= 4N

SES9deSinleEnjd

- (0021010021 In 1002) IH NOWWRD

JOVYNIVd LNINEJWED 368 FINVIIADWT IN18d ONTAINC = HYFOHYd

[ [ ~-r il e A e e AN B N e 2

2L X3TawWe)
ONVHD *A*Y AH (3d@713A30

HO0L/EL *ON HyrtBnd

JuLuoucoe o

P

SN M N O N0



32 (tslet Y JeOol I~ nen

SQuE Ut NGLLYDEIY /  WHIInd/

vy 27215 wvangdd

l Jeoy ER Qsny

NETLYIEIY WYydoud

XS 49 98114d TYHWAS SHdL0d
ASYMd 14: 3y 458 4y [1t4d 2s: 48 1St 3y lg7g N1d:dg
SWYHDEHdENS
UN3
0z 84 @9
d4ls
T+ 3LNINEEIHRNN

DU =SIXYX=2dILSX
0Ge* L =dilSA
(ANFI¥IH)ID8L8d 1v)
0G%L=sd31SA
00*Q =»d431SX

INNIANGD OF
(o IN]ZD3S=81) 3IONYQ3IdW] 48 SNINQGW: *2E 1
€0¢1¢0067521%070°9-705°0)T0UWAS Tiv)
0€E 81 8Y (0 *19¢ d38WNN) 41
(INFIVIH)SHALIBd 11VD
(T+970°7 1837 3N)ASYHd 11V)
(ANCEsT0])0) (1) Qv3y
(ANTE=T17CI)y) (1) Qv3ay
(ANfIsTfC])IH) (1) Qv
AN (1) Qv3y

INNIANGD 02
T ONIM3Y
0" 43IGWNN
(G270+24 ¢0+0)18174 YD
0G*1=23QvI3QA
0G+1=30av23QX
00+2= 3QVYI30A
00+ ¢=3QvI3QYX
gE* L= 3QVvI3CA
EE*E=3IJVIICX
00*1=23Z[SA
Q0 L) INNYX
QQe<d=xd3LSA
QU*13d31EX
FIVISACIAVIOSX IS IXVXIXVIA P NTWA T HIUHNN/ T 434/ NOWWE D
‘ A0VI333AA43QVIIACY/ELB NI/ NEWWED
LINAX FIZISA*IZISX/218 10/ NERWRED
dILISATGILSX/ 118D/ NEWWED
(D0M) I 7LDON )12 L00% ) IH NEWRAOD

. =101L€L "IN Wyaboag

[ [ |, ————s [Np— [E— [N | S ———— [—— N - - [ -

—“ UM EFNDONDO0

D-23



[e¢e2242< (+081=22) 41
C(T=1)A=([)AISHY=])

g2 IN

1dNAZANIWA=(1)AIBAA

QO T4+XX®"XX

NGIX*( 3TYISX*([)X)901Y =XX
Nede] <2 80

(ETAAIXX)LETd YD
INAZINTIRAS(L)IA)SAA

00 F+XX8XX

NOIX#( IVISXe(T)IX)9QTY =XX
_ INNIANGD
' 3QYI30X =X X8 XX

: (S7AAYOXILQd YD
(E75290¢0+AA'QX)1070d T1¥YD
3avI3QX#(r)LLi=XxX=0X

grisC 81 0Q
e L . ) o (2°AA'XX)181d 1Y)
(EfSST*QTAAXX)161d 1vD

- _gNele] 61 gQ
(S*0+3QVvI3AX/SIXYX)X] 4] =N
(27AAXX)40%d 1VD
Q0°*1+SIXVYX®XX

(ECAACO*T) 1874¢ ¥D
0171701700001 °0FAA ¢58°0)10HWAS YD

e e e N . . IdNA/NTIWA=®AA
(1(930) ISYHYI *TT 017006752140 70420¢0UG20)1g8WAS 1TVI

o L AKYWATT=2¢1°0000701°0AA  f¥9°0)1QEHAS 1Y)
01*0eAA®AA

L2PAAT0*T) 187d YD
IdNAZ INIHASXYHA)SAA
. . . . .._.A\ErQe00*1) 1Q"d Y]
.z~z>-«n-m~ﬁ-co.oubﬁ.o.oo.o-cm.o‘40m2>m Ty
AZISA/XYRA® [ dNA
IQVYI3aXe 1 l=v])LlvaN4sSIXYX
T+(430237C((NIX)IO8TVIX]I]eYV]
3NNTLINGD
(11)1v814en0*01/70°*1=3I¥YISX
I=11%1]

2fETT (O°*1=(1)X) 41
(338237((41X)9@v)Xx13le]]
00*1=37vISX

022 81 89 (0°*1H*Yy3YHNN) 31
00¢081 sXVWA

00*08T=sN[WA
43623730QyD230XeNgIX
£EY658G620E¢2= 343003
(G2d31SA*dILSX) 481d 1y)D
JLISA=d31SA®d3ILSA
/6692076206 LEECUTIQECOIBT22°0764G1°076960¢08G00°0/711 Vvivd
(8741 /SIXV/NOWWED
JIVISACTIVISXISIXYX I XVWINIWQ 3 IHWNN/T 434/ NEWWED
3GVIITACIAYIAQX/ELQ NI/ NEWKED

JZISATIZISX/2L80d/NEWWED

dI1SAC4ILSX/T181d/NEBKRKWED

CT)ATLTIX NQISKAWIA

ONVHD *A®X AB 13d873A30

INTATX)SHdLud INTLNBHYNS

—— [S—— R S LSS FR—— — —— IR — [

0ee2
6l
8t

-0 m

—~ M 2O O O



| DS,

[S—

|

aN3

Nan L3N

3NNTLINGD
(QQINIS*yd=(]) ]y
(Qa)S8I e (1) Yy
IdeEEGHL10°0=CAa
(l)lu=]d

(1) uu"yd

N'I*] € 93

INNTLANGD

* 81 @9

INNILANGD
QQ»SeLLS62°LS*(]1) 1Y
e . .00+0=@Qq
1791 ¢L1 (9TwieEe (QQ)SHY) JI
G191 797 (XVYWu~(]1)yy) 4HI

(Id* ld+Ud#dd) LH0Se ] )Yy
(adfldrenvive=qQq
1 04 @89
00°0=QQ

*1 @1 @69
(1d)S8Y/1d*+062QQ
P12 01Y (1d) 31
E1¢01°E} (dd) J1
(I)Ju=1d
_(1)uyeyd
N’Tes] 02 gQ
s000000 1/ XVYHEEXVYWY

INNILINGD

ag= XYy

Gr9f9 (XVvKW¥eQQ) 41
([deld+Hdedd) LytsS=QQ

(I)Iy=]ld

(1) uysdyd

N’I=] 9 @Q

00*0e XYY

Tense (M) 41

(RIIye0)ud NOISNIKIQ

. ONYHD *A*X AH Q34013A3Q
(AN TH7244IN) 4SYHY 3IN] LNGYHHENS

un i

Nanl 3N

D0*Nsd3L5X

(S<73LISAQ°0) 18 1d T1v)
CINPAATXX) 131d Tv)

E=]N

- — e s -~ — —

o2
L
91
st

LA
£l

it
o1

el

2

UMD~ ON

9

29
19
09
65



(Ee3°000e0) 187d YD

(V1e0=el el 0000 70T *UrOL0+AACLC?0m)1EHAS TTYD
(4084 72¢00570020°0T¢0750¢0=AA*O7*0U=)1gHWAS 1vD

3QVI3UA=AASAA
(27UA*C*0)1871d T17I¥D
(E7QA*G290°0)1687d 1v2
IQvIIAA%(rILLl=AA=QA
geisi® 91 @QQ
(27AA70°0)18717d VD
(EfAA’GC140)108d Tv)
fL=vizy]

(YI#1=¢1¢1700°0701°07AA¢Lc*0~)T1GHWAS T¥D
(1011727071 700°070T¢07GT1*0=AAC0O°0=)1QHWAS VD

76694096225+ 06LOE*UTIQE*QsBT22eUrgnST¢076960¢078540°07 1

AN?Is] (1 @qQ
(G*0+3AVIFUA/SIXVYAIX] SI®AN
(27AA°0°+0) L0 d 1yI
SIXYARAA

(EfQ*0*0°*Q) 1817d 1vD
ANNILING)D
(11)4Y¥9714#*0°01/70°1=2371¥DSA
' nisGlenl (I1) 4]
QO*T=371Y2SA
3QYI03AA*([1=Y]1)ivON4=SIXYA
CI1)iv@4=+Qe0TaN]KHA
Ol=vi®}ll
(Y[)LlYQineQ O F"XVYKWA
bevisyl

g8, (0°TeXVYKWA) 41
T+0436237(XYWAIDOIVIX] 4]y
3NNTAINGD

(TIASXYWA

§9°9 (XyWA=(])A) 4]

N'2=] 9 93

(TIA®XYWA
30vI3aX#([1=vI)ivel3IsSIXV¥X
(V])iV@14##0*0TaXYRX

b+ (3430237 0(NIX)OGIVIX] 4]y
ANNILINGD
(I1)iv@14#%#0°07/70°*1237¥ISX
bell®]1]

2¢€*T (0*1=-(1)X) d]
(430237¢(L)x)900V)I X 4]=]]
00*123vJSX

(3QvD3QA7S*9 IX1d4l=0]

0c gL 09 t0°Ll9ey3agunny 41
43682373AQvI3UA=NEGIA
43903/73QYD3UX=NBIX
£9658G20E*2= 43001
(S27d3LSACdILSX) 18774 v
UO*T+d31SXed34iSX

YivQg
(81141 /SIXY/NEGWHED

FIVISACFAVISXISIXIYX IXVWATNTWNA T HTEWNN/ | 430/ NEHRED

30YIIAAP3CVIH4OX/E LGN/ NOHWED
d3LSATLIISX/ L6 Td/NEWKWRD
CTIACCLIX NBISNART

ONVHD ¢A®x A% (HA48713ATF7)
(NFAX)QEL3d I-TiN[uEns

e [ [om——

Ll
31

Sl
LA

™~ 00 O

< ) O

—“ UM N0 0 O

S



(N
NaML 3

0S¢ I5d31SX
(S¢f00¢DSIXYX)190d Tv)
INNTLINGD
(2700°0¢SIXyX)1871d 1v)
(2'SIXVACSIXYX)181d 1IvD
(EYSIXYA00°0) 1874 1¥D
(27AACXXIL0d 1T¥)
(ESC1s0=AAXX) 181d 1Y)
QY 4aXaXX=XX

(2'AAQX) 416874 1vD
(E75290°0=AAAX) 107d 1VD
3QvI3QX = (M) L) =XX2QX

griel 82 @Q

XNfI®] g2 @Q
(27AAFXX)1087d 1D
(ECAACG21L°0=XX)180d 1y
(27QA'XX)187d 1Y)
(E70AS5290%0=XX) 481d V¥D
3QVIAAA (]I LL=AASGA
reesyl

8¢1s 92 gq

3QYI3QA+AATAA

ANTL=] (2 @0

00°0%AA

SIXYX®2XX

.0E @4 99 10*L9°438WNN) ]

el

‘ O OITTAATXX) 191d 1Y)
00°0=AA (NIWA *17° (1)A) 41
SIXYA®AA (XYWA (B¢ ([)A) 4]
NOJA#(3TVISA#(])A)BQIVeAL
e . _N@IX®(3TyISX#(1)X)9glvexX
NeI=] EZ2 00

E=n]

CiUZH) ADNINOIYSI *HT 70 170000 ¢G2T 20 AAPXX)IGEWAS 11¥D
0Ge0=244

G2*0+00°E/SIXYXaXX

(XYWXOX][¢2¢1700%0°0T*0702°0= XX )18HWAS TvD
3QvI3aX~XX=XX

(2704070X)167d 1D

(€G290°070X) L87d 1¥D

3QvI3IAX* (") LL=XX"0X

gelsr g1 90

(270%07XX)181d 1Y)

(£0G210°07XX) 187d 1¥)

TH+XI=x] (S0 eQ7e XViX) 4]

00T/ XYNXEXYIX

(XYAX N[ 26T ¢000¢0T+0¢0290~70F¢U=XX)1GHWAS 1¥)

XNfl=]l 63 83

P=ay]

(G+0+3QYI3UX/SIXYXIX] 3] 2XN

(27040 ¢xX)181d T1v)

SIXVXEXX

CE

6¢

8e

L2

9¢

02

61
21

elt
EAR
171
011



[S 1] ) 01000 LO+3IngEEE D 10+3.841%0 { 9Gn5*GSGE
{ 6L ) 6000Q¢0Q 10+38189E0 10+30908¢+0Q { CHEE*6SL
(L } 600080 1043G€G0€0 T10+306¢2%*0 ( 119109
. ( 69 ] 6000+Q §0+38LL9€E 0 10+3621€24+0 ( LL01*6LY
{65 ) 600090 1043682520 10+3201910 ( 889G+08€E
\ ES ) 60000 10+36EL61+0 10+388SELQ ( 9962+20€E
{ 6% ) 60000 10+3G66L61+0 10+362£01¢0 ( Qg21+0%2
‘ - ( &% } 60000 1043816420 10+312201¢0 { 99EL°061}
( 19 ) 600090 10+38990g+0 10+3016G82°0 ( ££05*167
B A g8 60000 . 00U¢3ISIIEO. 10+3208Q1°+0 { 99#g+021
( LE ) 60000 10+396%L1+0 00+315225°0 ( {96556
. . . - ot gE ). 01000 Q0+3EL%940= 10+321¢£81°0 { 9EEE*SL
( 1€ ) 600040 VO+3846ET10 Q0+3ETTIEED ( 291E°09
.. e _ L E2 ). 0100°0 _ I0e3£E2108¢0- '00+3GL.9S°0 ( 6016°°LY
¢ 1€ ) 8000°+0 TO+3LG%6T+0 = 00+38918G+0 ( 0¢S0°*gE
A_f£2 ) _ 80000 _ QO0+361104°0C _  00+3E96%1°¢Q. L._.L622°0E
t 61 ) L0000 00+321991+0e«  OQO0+3LBEZE*O ( €210*#2
I e A L2 ) 600040 JO+3IREEELQ 10+3LEE21°0 . { LELO*gT
{61 ) 01000 00+3201%8+0 10«3894/L6°0 ( 8091461
_ - I T2 4 1....90000 _ . 00+30422#¢0Q 1023644090 { (9ED*21
LI 9 4 ) 80000 0043805010 10-39809L°0 { S654'¢
e A GY ) £00Q0°eQ  QQ4+3L10%%e0« _ QOU+3AE%IE0  (_SEEGeL
( g2 ) £000+0 10+3885G2+0 “10+368612°0 ( 91€0+9
el .St ) 80000 _ QQ+3EH66L°0 __ 10+3G69.0L°0 {_TT6L%Y
( €Y ) 90000 00+3S/E94¢0 10-3529€2+0 ( (SUR*E
I I C Bl ) 9000°Q_ OQe3IEEVIE+0 10«3E2641°0 .\ 0ECO*E
{17 } #0000 O0+3EEGTI2+0 10=-3€9121°0 ( 21042
e e e o bIL ) 200000  QO+3g/%e1¢0 10-3520711°0. { %L06°1
LI 0 ¢ ) 10000 10e3209289+0 10-38,%01¢0 { 161G}
L G831 ) 000000 _ T0=3eLILESOC 10-38810¢°Q ( Sg0eet
LI ) § ) 00000 2Ua357190640~ 10-352001+0 ( 65%6°0
o (I ¢ ) 00000 10«3L0L850- 20=-3%6266°0 { £64L°0
[ 4 ) 00000 00+3%0G01+0= 20-3£1.864%0 { 2€09°+0
. t It ) 100Q0 00+3E8651 0~ 20-379€E86°0Q ( 164%°0
[ O ¢ ) 100040 00+390€22¢0~ 20=-39n186°0 ( 908t°+0
(T ) 10000 QuU+3wTge2 0= 20-301086°0 { £€20€°0
[ S ¢ ) 10000 00+38068E 0~ 20=3926L6*0Q ( T0%e+0
(SRR ) 10000 Q0+3€EL00Ge0- ¢0=-30L8L6°0 ( L0610
LI 0 § ) 100090 00+3%06E9+0- 20-39E8L6°0 { G1491+0
(R ) 10000 QU+3IBET 180~ 20-3G18L6°0 { €0¢1+0
LI § ) 10000 00U+300000¢C 1043011590 { 00000

| U

.

LAY

d84SN

) 26%6°6666 *04 1w

) EBES*EN6L 04 O

) OEwS*60E9 »0J 6E

) LL%8°110G sD4 g€

) LESO*186E ¢04 (€

) (292°291E *04 GE

) (9.8°11G2 %04 GE

) LES2*G66T 304 &€

) £L988+48ST =04 EE

) L026%8Sel 804 2E_ .
) €966°666 804 1€

) 2G2E*46L 304 QF

) 1GG640E9 sOD4 62

) 6581¢10S8. =pd4 g2

) 0901¢86E 804 (2

1 .9922*91E_ 804 92 ___
) 8L81°1G2 #03 G2

) LS2S°661 =04 a2 o
) 688%°8S1 04 g2 Q

) 226862V b4 22
) L666%°66 04 12 o

) 92EN'AL D402

) 9560°€9 D3 ¢°

) 98911+0s b4 8% .
) 9018*6E D4

) L229°1E . eD4 9l S
) ggileg2 04 gt

) 9gs6e*sY _ Q4 el
) 68%8:G1 D4 EV

) 2685°21 =p4 gt

) 0000¢0% &03 1T

) EEN6°L “03 01

) 960E*9 04 6

) 6110¢g w04 8

) T186°E «04 ¢

) E291°E *04 9

) 611Ge2 04 §

) £566°1 04

) 6n8S*T 04 €

) 68G<3 04 2

) 000040 04 1

[——

GeO##(4)10-3G6G50
IH ¢0+39%01°0
NI/79 1) 10+30189¢0

di LU+3L¥I 10

S—

2 JONVI3dW] WY3B ILINTANI
®3344 IVINIWVANNS
*SS3IN4414S DILVLS

JCLIEL

i

S



102

3 — (N AR
S 1] bt ol 11111:' hdend ol 2L 4 L ey JQMM
ks J RV

PIa

101 k] ¢ " IIIUI‘ 1] L LI I’UIVT‘ 1] L 2 ] ‘1"“ L L 3L} ‘-ll‘i

[ E | innlnl

| . ljllll

&

MODULUS OF [IPEINICE (LB-SZC/7IN)
= _

S { P 1
lu Il 1 2 A RARR 2 ] 2 2 R 222 J | 2 2 2 2401212 '] 2 £ 2 kA

1. 10 100 1R
FREQUZCY (HZ)

D-29

g



g
* PeAIRSQO ' pINIOSQO
. 2U9M HUIWRINIDBW [D4UPWIRAXS PUD 5UOYD1PRId (DI A oUD sonbiuyoe| Lo duio . 240m SJUBWRINI0IW JDjudWLIRAXD puD suO Y2 1PId |DIPAjouUD
senbjuyoe | voyoyndwo) ‘g usemisq susweaBo Liojansiiog * wanpeacid uoyoinduoa tuy28] voyoindwoy - 4 URBM|Bq 5jUIWBRIBO A30420y5140G * 3RINPB0Id uoYDINdWOD
swa A S{D)UOWSE P Of PasN BIIM SUOJOINBIJUCD |0INIINLS (UBIBYIP YiiM swoibowap, ' 2J0I3UOWE P O PISN 249M SUOLOINGLJUOD [OINIINLS (LBIIYIP YHIMm
N 9 swe|qosd 8jdwioxe om| " uoyo|NdWOD |DALDW JO JUNCWD WNWIL W 5w qoid 9dwoxad omf *LOHOINAWOD (ONUDW JO JUNCWD WNWU IW
whssede 9310 . D Y)1m A jo31ydosb wnyosds 82105 syy #yndwod o padojerep waizeds 9240y g © yim A||odiydoib wnyyosds 32105 ayy 94ndwos o) padojarap
H29ds 4 S $OM $1I0Y3 |oUODINdWOD pud swoiBowou JO 495 y  *puydeds SOM SpIBYD jouolioindwod pup swosbowou 40 493y *opyyoeds
s iBUAQ 10sions . 9n559.1d PeY20|q FUD Aji|1qOw 3145n0dD “@ouppadull Joingsnus saquoudq [oingans 2inss3.d pax20|q Fue A31)1qow Sysnedn *83uopadull [oingoniys
! [CRLEUELR IS 4 JO suuey uy passaidxe si puo |apows aduopaduwy joduoydaw ) JO suudy Uy passaidxa sy puo jdpow sduopadwil oo uoydIW
Ay opsosy g |PUCISUAWIP-BUO D WOIY PIALIBP SOM UOLIONDY WNIOEds-2210) oY) Anjigoy sysncoy g jOUOISUBWIP-BUO D WOJy PIALISP sOM LOHDNDS WNYIEds-30104 By
) *quawuosiaue Aiojoiqia ayy jo suolyaipaid £104o0451108 apjacid *udwuoIIALG A1010aqia By 30 suoyapasd L10§o0y5140s apiaoid
eavopedui] (o3UOYIBY  °Z LM PUO HO-OY{-§0-j0is |USP1d BYY JO PALIDIIPUL PIISPISUOT 3 sucpidw] concyayw g 1M PUO {1D-3Y-§0-jD4s juataid By} JO PALDDIPUL PRIBPISUOD §y
U»Ztuu?ﬁ m_p.._. ° SUO1§D{|IX@ D}§SNOD0 WCpPUDS m:b%uokw oy _uv.u&_ v;:vuuea SIY] *SUOHD}IIXNY ISNOID WCPUDI m:cﬂnno»n_ o} vv.uo_
(PYS pouRiNS T -90s $9uM4INAYs |BaLIpU |43 Of pRYDDYD saBoxyaod juawdinba 4o sIEUS peuapgns vy -qns 510205 jadiiEuL|4a o) payaoyo saboxyded jusudinba jo
Diy2ds 22104 Bujapip ejowlysae 04 anbjuydey o sjuasdid jsodes siy) 01423ds 82104 BuiaLp djowyysd 0f anbiuyde; o syusaud j1odas spy)
- . 7~ .
L1BSZ-BSYN "Il DWoqoly ‘3|IASIUNY ‘3j04S YouoasRY ‘591104010qDT LM LIBSC-65VN m owoqoly ‘3||IANUNY *}joi§ yoicasay ‘seli0joioqo] 1AM
6t W Ll €461 1equidag ooy ‘O ‘wingye0) ‘P ‘Buoy) T ATy &L 4l €261 49quaydag ooy *3TD ‘wingya0) ") ‘Buoy) TATY
SLNINOJIWOD 31D1HIA 3DVdS §0O4 . SININOIWOD 31DIHIAA IDVdS 304
Oovi D9 V13313 ONIGVO1 JHSNODV-O¥8IA 30 NOILDIA3Yd Ovi "2 "9 VI43LID ONIAVOT DILSNODY -OudIA 40 NOILOIGIud
N3NGAND0D "D °r NINAAD0D "D 'f
ONVHD "A "% I 6-EL 4M ITAM ONVHD "A "X I €L UM I1AM
* pIAIRsqO * paaidsqo
. S19M SJUPWRINIDIW |DIUPWIREXD PUD SUOYDIPRId (DDA DUD b . 213M HUAWIINIDAW |DJUIWIRAXS puo Lo 1Pasd od1A ouD
senbjuyjae) uoyoinduo) </ uPIMRq SuPWRIBD A104aD)s)0g * @INped0id uoyoyndwod senbyuyas) uooindwoy - c/ usamiaq yuaweaibo Asoyopysog * s2inpedoid uoyoindwod
wos . PJDIJSUOWEP Of PISN BIBM SUOHOINBIHUOD [DINYINUS LBIBYIP Yiim Suiosb . PJ0ISUOWR P Of PISN BIBM SUOHOINGIUCD [BINIINUYS JURiagHIP Yim
N 9 swd|qosd 9jdwoxd om| ‘Lol DINdwOD |DALDW JO JUNOWD WAL | N ? swd|qosd J|dwDx® OMm]  “UOHOINAWOT |DALDW JO JUAGWD WL W
. o ypm x:ouia_u._m wnydads @104 ayy ¥yndwod o) padojarap . O yiim x:auE&Em wnyyoeds 90105 ayy #ndwod oy _ueao_o>uv
winidadg 83,04 s som 541043 |ouoljoyndwod puo swoiBowou §0 §as y " bijdeds wniioads 92104 S som $4uDY2 [ouoljoindwod puo swosbouwou jo jas y  osdads
o wouAq 1Di0ion . 8unssaid pax30|q pup A3311qow 3145h000 ‘duopaduw |0iNONLYS soruoukq joangons . @inssasd paxnoojq puo Ajtfiqow 34450030 ‘aduopadul joinydnys
¥ q jeinianng 40 suLdy u) passaidxa sj pun j@pow sauppadu |031UBYISW : al I 4 4O suudy L) PassIIdxD 5§ puo [Fpow sduppadw) (DI 1UOYIIW
Asjiqow dusnesy g |OUOISUBIP-BUO D WO PIALIBP sOM UOLONDR WnJ dads-32105 ay| Aisjiqow auseoy g {DUOISUBWIP-BUO D WOIJ PIALIVP SOM LUOHONDY WN1YDIds-30104 dy|
’ ) * juswuosAue AioJDIqia 3Y4 40 WO 1pdsd A10420451408 03)&.& *quawIosIAuS A10j0ig1A Yy 3O su0DIPaId A10§d0451HDs dpiacid
soLopsdw] jmoncyosyy g [§1# puD HO-3Y4-§0-aj0is judsaid ayy JO BAYOIIPUL PRISPISLOD 5y +] s>copadu] pajuoyoayy ‘7 {14 PUD HID-PY}-§O-34D§s judsdid By} JO BAIIDIIPU] PRIBPIUOD 5i
@a0p320sd $1y] " UOHODJIIXD ILYSNODD WCPUDS FUDGPOOIG Of PRyl dunpadoud sy *SUOLD|IING D14SNOID WCPUD) FUDGPDOIG Of paydaf
S|jPuS pRusgng  * -qns 5210430448 [DOLIEULAD ©) paydoyo seboxdnd juswdinbe jo SHPVS PRUANS T -qns seanyonWs [D21pu A3 0 payaoo seBoxsod juswdinba jo
01428ds 92105 Bujayip 4pwiyyse o) enbiuysey o sjuasesd yrodas spy) D1y23ds 2240) BuyA lp 3ow§sd O} o:v“csuu. o sjuasasd y1odas siy)
118SZ-8SYN  “llI oWoqoly ‘@) IANUNY ‘4J0IS YDIcasaY ‘53)101040q0T LM 1185C-8SY N "1l oWOGojY ‘|| IANUNY ‘0IS YIIDIsRY ‘531401010q0T FAMm
PR ££61 19quydag ooy ‘3O ‘uinga0) "D ‘Buoy) T AT sef UM H ££6| 19queidag ooy "9 ‘ungjao) “r ‘Bubyd AN
SININOIWOD F1DIHIA 1DvdS 304 SININOJIWOD 31DIHIA 3DVdS 304
ovi3 D9 v 133110 ONIGVO1T D14SNO IV -O¥aIA JO NOILDIA3Yd (01 5 Be Jk)) V431130 ONIQvO1 JIISNODV-0d9IA 40 NOILDIAIdd
N¥NEND0D *D °r NYNEANDQD *D °f
ONVHD "A '3 I 6~CL ¥M NAM ONVHD "A X I 6-EL UM ITAM
mr'/t.k | S | — —— . | — e ——e e _ «I..I|L — —— wL, ——— . Pl . e L ———




"ponioiqo

' poAIRsqo
RUIM HUIWRINIDIW |DJUIWLIIdXD puD U0 |421peid jpOYL|ouD b o . VUM HUIWRINIORW |D{UBWIBdXD PUD sUOYD1PaId [RIHAjOUD
b . senbjuyse | uoyyojndwo
senbpuyasy uoyoindwey -4 uPemIaq HUIWRRIBO A10yo05190g * $RunPeddid uoYBNdWED 101 Uoned S uIIMaq Huswaaibo A10)30js140g *$2inped0id uoyyoindwod
N ‘9 @JOIPUOUR P Of PAsN 218m 5UOLOINBIHUOD [RINIDNIS JURIHIP Yiim swo.bowopy  *9 @JOIUOWE P Of PISN S19m SUOHDINBIUOD [DINY2NLs ALBIYIP YiIM
swa|qoid 9|dwoxe oM} °u0IDINdWOD [OAUDW JO JUNOWD WAWILIW swd|qosd 3jduiox® om| *LOHPINJWOD [DALOW JO {UNOWD WhWL W
wnioedg so10y ¢ o yim Ajjoaiydoab waysads 8310y 8yy 9yndwod oy padojesap wayoedg 93104 ¢ o yiim A|j031ydoib wniyssds 3010) ayy 9ndwod o) padojeasp
SoMm §JI0Yd _oco:E:nEou puo swosbowou o 495 v *piyoads SOM S1JOYD |ouOHDINdWOD pup swoiBowou 4O 48s y  *osdeds
sopuoukg josnpniis  Cp 9.n5533d P9r20|q puR 4j1)1qow 21450020 ‘@dubpadul) jOINYINIYS souibuAq (oinjanyg 9unssaud pIx20|q Fuo A1j1qow 31snoan ‘@duopadw) |oingonsys
JO suudy uy passesdxs sy puo |epow dsuopaduly (D3 LDYIIW O suud} uy passaidxd 5y puo (Ipow sduopadw jodiubYdPwW
b:_ apsacoy g [DUD{SUBIP-PUO © WO P 1IBP SOM uOypnbe wniydadi-adio) ay) b_:n_.OI apsooy g |DUOISUBWIP-FUC D WO PIALIFP SOM UOHDNDS wNjosds-adi0y ay|
cJudwuoiaud A10)0iq)A BY§ O su0Ya1pIsd A10jopysijos apracid T judwudiiaug bo.ci? Y4 3o suoyapasd Ai0go0451408 9piacid
our.umvnaE_ oriunylay ‘7 1M PUD HO-84|-}0-4D}s uasaud @Y} JO SALJOOIPUY paIBPISUCD SI s -opsdw) Jpalvtyiaw g 1™ puD PD-yi-30-2JD}s juasdad VYl JO SA1DIIPUL PRIBPIUOD 5|
U.vauea SIY] " SUOIIDYIOXS D1JSNOO0 WCPUDS FUDGPDAIG Of _vosvmm vg:vvuo.a $ty] ‘sUONDYIDX3 2{IN0DD WCPUD) FUDGEDOIG O .uo_uo.—
S{|#uC pouRNS T | -q0s $2un42N0uys joo1pul|Ad 0f PAYORYI0 $3Boxd0d Juewdinbs jo SIRUS PRUANS Tt =qns 581012045 (031IFULAD 0f pay0iio saBorded juawdinba jo
01j29ds 9210} BujALIp 2jowiyse Of @nbuydey o squIsed ioded sy 04428ds 30405 Bugapp Sjowyse 04 anbiuydey o sjudsaud jiodas siy)
_ . 7 .
Li18sT-6SVN  “lll ownqo)y ‘3|jIAUNY ‘}404g YduoRsay ‘sari0jpi0qoT BjAM LIBGZ-6SYN "Il DWOGD)Y ‘S||IASIUNY ‘304G YaIcasay ‘531104010GDT JAM
u . . . - . I - . a 4 . . , . . ~? . .

&-€L WM 'l ££6] 49queidag fooy *D° O ‘winqyeo) D[ ‘Buby) ATy 6-€L ¥M  °li €461 19quaEas 0oy O Twingyda) "o OYD TATHN
SININOIWOD F1DIHIA 3DVdS 404 i SININOIWOD 31DIHIA IDVvdS 304
Oovi'D'9 VI33LIO ONEGVOT DILISNO DV -O¥EIA 4O NOLLDIQ3dd OvA DD vI3ILID ONIAvO] J1LSNODV-0¥lIA 40 NOILDIAIud

NINEND0D D P N3NEXD0D D °f
ONVHD "A "X 'l 6-EL UM 3TAM ONVHO "A "N I 4-EL IM ITAM
* pRAlRsSqo *panasqo
N 219M SJUBWRINTOIW |D{UBWIIAXD pun suC|dipasd |03 14k ouD b d . UM JUIWRINIDIW |DIUIWIRAXS Pus U012 1pRsd |01 kjouD
senbiuyde] uoyoindwod  */ uddM{9q $judwIBo A104oDy51H0g  * $2uNp@d0id LOL{DINdWO $20D1UY0 uoloindway - tL uPdMI8q syudweIbo A10yopysiog * $Rnpad0sd Lol Dindwod
swoabowop " @DIPUCWE P Of PISH dsoM m:o:n::m_..:oo |DINIINNS LRI IP Yiim nEoLmOEDZ ‘9 @JDIJSUOWE P Of pasn diam ucozo._:m::cu |DINIDNLS JUBIBYPIP WiMm
swo|qosd 3|dwoxd om] *1O01{0§NAWOD |DAUDW JO JUNOWD WNWIHIW swo|qoud jdwox® Om| UCHDINGWOD JDAUDW JO JUNCWOD WNWIU W
. D yyim Ajjoo1ydosb wniydsds 9205 Yy a4ndwod o) padojsaep d . D yiim A(joo1ydoiB wnuyosds 92104 vyy 3)ndwoo of pedojdsep
E?;uvn.m 83104 S SDM ${iDY>d _o.._c:uSnEOU puo swipsBowou oy *oijoads wAyaeds 92104 § SOM SpIoYyd _OEOZE:QEOU puo swoiBowou jodas y *piydads
sayuwinuAq joinponng  *p @inssasd paxd0|q Fue A}1j1qouw 3145n0d0 ‘@duopadu) oingdnuys s1uwoukq [oinorus  Tp 2unssaid paxooyq puo A{11qow 3145n030 ‘Iduppadul joiNgoNIys
4O swudy Uy passaidxa 5| puo |Spow dauopadul |odIUDYIRW 4O suudy uy passedxd sy puo |pow douppadw) joIUDYIPW
Aijiqow osacoy g |QUOSUBWIP-BUO D WO PRALIPP sDM LO|jDNbD wniydeds-92i0) BY) A susmosy g |OUOISUIWP~IUO D WL PIALIIP SOM UOHDNDY Wni§d3ds-20105 9y|
* UBWILOIIALR A10JDIGIA By} JO SuOYD|pIsd x..o.ucun:uu opiacud’ * juewuos AU AIoiDiqia dyy JO suo1yd1pard A104004s5140s apiacad
suopsdw] ,Lolicyodyy 7 (1M PUD PD-yi-J0-940s Juesaid Sy JO BALIDIIPU| PIISPISUOD sovopadul \mouoydyy g 1% PUD PD-By|-jO-340Js JuSs3.d Sy JO BANDIPUL PRISPIKUOD )
2inpadoud sjy| *IUCHD}IIXD IYYSNODD WICPUDI FUDPOOIG O ?o.uo.— . @inpodoud 51y} *SUOLIDI)IX@ D1YSNODD WEPUDI FUDGPDOIY Of payoal
sjjouc peudyng | -qns 524043n44s |031FUYAD 0 paydoyio seBoxysed juswdinba jo sploys peuayns g -Qns sa1nydnys [0311pui|A3 o} payonye s@bojydod juawdinba jo

p4goeds 22105 BuiALp djowlyse of anbiuysay o sjuasaid ysodas st
) Buialp ! uy 141

©1128ds 2104 Buiapp djowlyss o4 anbiuydsy o yuasaid piodas sy)

11862-6SYN  "lil ouinqojy ‘@||IAsiuny ‘§joig YdIcsRY ‘53140D10qDY F[AM L1BST-8SYN "INl oWDQDfY ‘S||IAHUNH ‘ H0IS Y2uDSsaYy ‘521404040q0T F|AM
6€L WM 1 ££61 1aquaidag fooy "D ‘uingyda) t ) ‘Buoy) AT gl um 1l €L61 19quividag tooy "9 ‘uangype) T ‘Buoy) AN
SININOIWOD IT1DIHIA 3DVdS 404 SININOIWOD 31DIHIA 30vdS 304
OvA 279 v 1431140 ONIAvO1 DILISNOIV-O¥8IA 10 NOILDIA3ud ovi "D 9 V14311 ONIGVOT DILSNODV -O¥alIA 40 NOILLDIAIW
N¥NAAD0D "D °f NYNEND0D "D '
ONVHD "A "N I 6-EL ¥M 3TAM ONVHD "A "N I 6-€£ dM ITAM
{ L 4 { L N— _ | —— ! R e 2 e i




